Synthesis 2021; 53(13): 2219-2228
DOI: 10.1055/a-1372-1619
paper

Tandem Alkylation/Michael Addition Reaction of Dithiocarbamic Acids with Alkyl γ-Bromocrotonates: Access to Functionalized 1,3-Thiazolidine-2-thiones

Maryam Khalili Foumeshi
a   Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh Street, Tehran, Iran
b   Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
,
a   Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh Street, Tehran, Iran
c   Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg im Breisgau, Germany
,
Ali Alaei
a   Faculty of Chemistry, Kharazmi University, P. O. Box 15719-14911, 49 Mofateh Street, Tehran, Iran
,
Blanka Klepetářová
b   Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
,
Petr Beier
b   Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
› Author Affiliations
We are grateful to the Faculty of Chemistry of Kharazmi University for supporting this work. Azim Ziyaei Halimehjani thanks the Alexander von Humboldt Foundation for supporting his research at the Albert­-Ludwigs-Universität Freiburg. In addition, the project was financially supported by the Czech Academy of Sciences (RVO: 61388963).


Abstract

Thiazolidine-2-thiones were prepared via a novel multicomponent reaction of primary amines (amino acids), carbon disulfide, and γ-bromocrotonates. The reaction proceeds via a domino alkylation/intramolecular Michael addition to provide the corresponding thiazolidine-2-thiones in high to excellent yields. By using diamines in this protocol, bis(thiazolidine-2-thiones) derivatives were synthesized. The synthetic utility of the adducts was demonstrated by hydrolysis, amidation, and oxidation reactions.

Supporting Information



Publication History

Received: 28 November 2020

Accepted after revision: 25 January 2021

Accepted Manuscript online:
25 January 2021

Article published online:
24 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Azizi N, Aryanasab F, Torkiyan L, Ziyaei A, Saidi MR. J. Org. Chem. 2006; 71: 3634
    • 1b Ziyaei Halimehjani A, Marjani K, Ashouri A. Green Chem. 2010; 12: 1306
  • 2 Ziyaei Halimehjani A, Breit B. Chem. Commun. 2019; 55: 1253
  • 3 Ziyaei Halimehjani A, Saidi MR. Can. J. Chem. 2006; 84: 1515
  • 4 Ziyaei Halimehjani A, Lotfi Nosood Y. Org. Lett. 2017; 19: 6748
  • 5 Ziyaei Halimehjani A, Hajiloo Shayegan M, Hashemi MM, Notash B. Org. Lett. 2012; 14: 3838
  • 6 Ziyaei Halimehjani A, Klepetářová B, Beier P. Tetrahedron 2018; 74: 1850
  • 7 Ziyaei Halimehjani A, Dračínský M, Beier P. Beilstein J. Org. Chem. 2017; 13: 2502
  • 8 Khalili Foumeshi M, Ziyaei Halimehjani A, Beier P. Synlett 2020; 31: 987
    • 9a Ziyaei Halimehjani A, Pasha Zanussi H, Ranjbari MA. Synthesis 2013; 45: 1483
    • 9b Ziyaei Halimehjani A, Hooshmand SE, Shamiri EV. Tetrahedron Lett. 2014; 55: 5454
    • 11a Nechaev A, Peshkov A, Van Hecke K, Peshkov V, Van der Eycken E. Eur. J. Org. Chem. 2017; 1063
    • 11b Ziyaei Halimehjani A, Maleki H, Saidi MR. Tetrahedron Lett. 2009; 50: 2747
    • 11c Wang XJ, Xu HW, Guo LL, Zhang W, Chen GW, Guo X, Liu HM. Heterocycles 2011; 83: 1005
    • 12a Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Top. Curr. Chem. 2020; 34: 378
    • 12b Tomasic T, Masic LP. Curr. Med. Chem. 2009; 16: 1596
    • 12c de Almeida AM, Oliveira BA, Castro PP, Mendonç CC, Furtado RA, Nicolella HD, Silva VL, Diniz CG, Tavares DC, Silva H, Almeida MV. BioMetals 2017; 30: 841
    • 12d Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J. Nat. Cell Biol. 2001; 3: 173
    • 12e Alhamadsheh MM, Waters NC, Huddler DP, Kreishman-Deitrick M, Florova G, Reynolds KA. Bioorg. Med. Chem. Lett. 2007; 17: 879
    • 12f Liu X, Xie H, Luo C, Tong L, Wang Y, Peng T, Ding J, Jiang H, Li H. J. Med. Chem. 2010;  53:  2661
    • 13a Greenwald RB, Pendri A, Martinez A, Gilbert C, Bradley P. Bioconjugate Chem. 1996; 7: 638
    • 13b Yeh TK, Kuo CC, Lee YZ, Ke YY, Chu KF, Hsu HY, Chang HY, Liu YW, Song JS, Yang CW, Lin LM, Sun M, Wu SH, Kuo PC, Shih C, Chen CT, Tsou LK, Lee SJ. J. Med. Chem. 2017; 60: 5599
    • 14a Munive L, Rivas VM, Ortiz A, Olivo HF. Org. Lett. 2012; 14: 3514
    • 14b Wu Y, Sun YP, Yang YQ, Hu Q, Zhang Q. J. Org. Chem. 2004; 69: 6141
    • 14c Fernández-Valparís J, Romo JM, Romea P, Urpí F, Kowalski H, Font-Bardia M. Org. Lett. 2015; 17: 3540
    • 15a Bell NA, Clegg W, Coles SJ, Constable CP, Harrington RW, Hursthouse MB, Light ME, Raper ES, Sammon C, Walker MR. Inorg. Chim. Acta 2004; 357: 2091
    • 15b Wei XY, Chu W, Huang RD, Zhang SW, Li H, Zhu QL. Inorg. Chem. Commun. 2006; 9: 1161
    • 16a Chen N, Jia W, Xu J. Eur. J. Org. Chem. 2009; 5841
    • 16b Medini H, Mekni NH, Boujlel K. J. Sulfur Chem. 2015; 36: 653
  • 17 Hsiao CN, Liu L, Miller MJ. J. Org. Chem. 1987; 52: 2201
  • 18 Xie Y, Lu C, Zhao B, Wang Q, Yao Y. J. Org. Chem. 2019; 84: 1951
  • 19 Gabillet S, Lecerclé D, Loreau O, Carboni M, Dézard S, Gomis JM, Taran F. Org. Lett. 2007; 9: 3925
  • 20 Nasiri F, Zolali A, Asadbegi SJ. Heterocycl. Chem. 2016; 53: 989
  • 21 Alizadeh A, Nasrin Z. Synlett 2009; 2146
  • 22 Stalling T, Saak W, Martens J. Eur. J. Org. Chem. 2013; 8022
    • 23a Yadav LD. S, Patel R, Srivastava VP. Tetrahedron Lett. 2009; 50: 1335
    • 23b Dighe SU, Yadav VD, Srivastava R, Mishra A, Gautam S, Srivastava AK, Balaramnavar VM, Saxena AK, Batra S. Tetrahedron 2014; 70: 6841
  • 24 Safa KD, Alyari M. Synthesis 2015; 47: 256
  • 25 CCDC 2043549 (4f) and 2043550 (4g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures