Synthesis 2021; 53(12): 2133-2141
DOI: 10.1055/a-1360-9852
paper

Efficient Route for the Synthesis of Diverse Heteroannelated 5-Cyanopyridines

Andrey P. Mityuk
a   Enamine Ltd., 78 Chervonotkatska str., Kyiv, Ukraine
,
Andrii Hrebonkin
a   Enamine Ltd., 78 Chervonotkatska str., Kyiv, Ukraine
,
Pavlo S. Lebed
a   Enamine Ltd., 78 Chervonotkatska str., Kyiv, Ukraine
b   Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv, Ukraine
,
Galyna P. Grabchuk
b   Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv, Ukraine
,
Dmitriy M. Volochnyuk
a   Enamine Ltd., 78 Chervonotkatska str., Kyiv, Ukraine
b   Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv, Ukraine
c   Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., Kyiv, Ukraine
,
a   Enamine Ltd., 78 Chervonotkatska str., Kyiv, Ukraine
b   Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv, Ukraine
› Author Affiliations
The work was funded by Enamine Ltd. and supported by the Ministry of Education and Science of Ukraine (Grant Number 0120U102179).


Abstract

The new efficient, convenient protocol for the synthesis of heteroannelated 3-cyanopyridines and pyrimidines starting from diverse aminoheterocycles and 3,3-dimethoxy-2-formylpropionitrile sodium salt was elaborated. The advantages and improvements of the procedure compared to previously known methods are shown. The scope and limitations of the method are determined. The impact of the structural features on regioselectivity are discussed. The preparativeness, scalability, and application scope of the elaborated protocol are demonstrated by the synthesis of five heteroannelated 3-cyanopyridines in quantities up to 100 grams.

Supporting Information



Publication History

Received: 21 September 2020

Accepted after revision: 18 January 2021

Accepted Manuscript online:
18 January 2021

Article published online:
08 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Chrovian CC, Soyode-Johnson A, Wall JL, Rech JC, Schoellerman J, Lord B, Coe KJ, Carruthers NI, Nguyen L, Jiang X, Koudriakova T, Balana B, Letavic MA. ACS Med. Chem. Lett. 2019; 10: 261
    • 1b Lin C, Hulpia F, Da Silva CF, Batista DD. G. J, Van Hecke K, Maes L, Caljon G, Soeiro MD. N. C, Van Calenbergh S. J. Med. Chem. 2019; 62: 8847
    • 1c Manetti F, Schenone S, Bondavalli F, Brullo C, Bruno O, Ranise A, Mosti L, Menozzi G, Fossa P, Trincavelli ML, Martini C, Martinelli A, Tintori C, Botta M. J. Med. Chem. 2005; 48: 7172
    • 1d Santhosh Kumar G, Poornachandra Y, Kumar Gunda S, Ratnakar Reddy K, Mohmed J, Shaik K, Ganesh Kumar C, Narsaiah B. Bioorg. Med. Chem. Lett. 2018; 28: 2328
  • 2 Bell J. Clin. Drug Invest. 2005; 25: 555
  • 3 Adib M, Peytam F, Rahmanian-Jazi M, Mohammadi-Khanaposhtani M, Mahernia S, Bijanzadeh HR, Jahani M, Imanparast S, Faramarzi MA, Mahdavi M, Larijani B. New J. Chem. 2018; 42: 17268
    • 4a Prakash O, Hussain K, Aneja DK, Sharma C, Aneja KR. Org. Med. Chem. Lett. 2011; 1: 1
    • 4b Diacon AH, Pym A, Grobusch M, Patienta R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Churchyard G, Venter A, Allen J, Palomino JC, De Marez T, van Heeswijk RP. G, Lounis N, Meyvisch P, Verbeeck J, Parys W, de Beule K, Andries K, McNeeley DF. New Engl. J. Med. 2009; 360: 2397
  • 5 Gao F, Liang Y, Zhou P, Cheng J, Ding K, Wang Y. Eur. J. Med. Chem. 2019; 178: 177
    • 6a Trofymchuk SA, Kliukovskyi DV, Semenov SV, Khairulin AR, Shevchenko VO, Bugera MY, Tarasenko KV, Volochnyuk DM, Ryabukhin SV. Synlett 2020; 31: 565
    • 6b Tereshchenko OD, Perebiynis MY, Knysh IV, Vasylets OV, Sorochenko AA, Slobodyanyuk EY, Rusanov EB, Borysov OV, Kolotilov SV, Ryabukhin SV, Volochnyuk DM. Adv. Synth. Catal. 2020; 362: 3229
    • 6c Chernykh AV, Melnykov KP, Tolmacheva NA, Kondratov IS, Radchenko DS, Daniliuc CG, Volochnyuk DM, Ryabukhin SV, Kuchkovska YO, Grygorenko OO. J. Org. Chem. 2019; 84: 8487
    • 6d Melnykov KP, Artemenko AN, Ivanenko BO, Sokolenko YM, Nosik PS, Ostapchuk EN, Grygorenko OO, Volochnyuk DM, Ryabukhin SV. ACS Omega 2019; 4: 7498
    • 6e Nosik PS, Poturai AS, Pashko MO, Melnykov KP, Ryabukhin SV, Volochnyuk DM, Grygorenko OO. Eur. J. Org. Chem. 2019; 4311
    • 6f Feskov IO, Chernykh AV, Kuchkovska YO, Daniliuc CG, Kondratov IS, Grygorenko OO. J. Org. Chem. 2019; 84: 1363
  • 7 Schaefer FC. In The Chemistry of the Cyano Group: Nitrile Reactivity. Rappoport Z. Inter Science; New York: 1970: 239
  • 8 North M. Comprehensive Organic Functional Group Transformations II, Vol. 3. Katritzky A, Taylor R. Elsevier; Amsterdam: 2004: 621
  • 9 Iaroshenko VO, Mkrtchyan S, Volochnyuk DM, Langer P, Sosnovskikh VY, Ostrovskyi D, Dudkin S, Kotljarov AV, Miliutina M, Savych I, Tolmachev AA. Synthesis 2010; 2749
    • 10a Mityuk AP, Volochnyuk DM, Ryabukhin SV, Plaskon AS, Shivanyuk A, Tolmachev AA. Synthesis 2009; 1858
    • 10b Ryabukhin SV, Plaskon AS, Volochnyuk DM, Tolmachev AA. Synthesis 2007; 1861
    • 10c Ryabukhin SV, Plaskon AS, Volochnyuk DM, Tolmachev AA. Synthesis 2007; 3155
    • 10d Ryabukhin SV, Plaskon AS, Volochnyuk DM, Pipko SE, Tolmachev AA. Heterocycles 2008; 75: 583
    • 10e Plaskon AS, Ryabukhin SV, Volochnyuk DM, Shivanyuk AN, Tolmachev AA. Heterocycles 2008; 75: 1765
    • 10f Plaskon AS, Ryabukhin SV, Volochnyuk DM, Gavrilenko KS, Shivanyuk AN, Tolmachev AA. J. Org. Chem. 2008; 73: 6010
    • 10g Plaskon AS, Ryabukhin SV, Volochnyuk DM, Tolmachev AA. Synthesis 2008; 1069
    • 10h Volochnyuk DM, Ryabukhin SV, Plaskon AS, Dmytriv YV, Grygorenko OO, Mykhailiuk PK, Krotko DG, Pushechnikov A, Tolmachev AA. J. Comb. Chem. 2010; 12: 510
    • 10i Ryabukhin SV, Naumchik VS, Grygorenko OO, Tolmachev AA. J. Heterocycl. Chem. 2012; 49: 1147
  • 11 Le Vacher V, Leroy C, Dupas G, Bourguignon J, QuéGuiner G. Synth. Commun. 1994; 24: 2697
  • 12 Benoit R, Dupas G, Bourguignon J, Quéguiner G. Synthesis 1987; 1124
    • 13a Iaroshenko VO, Ostrovskyi D, Miliutina M, Maalik A, Villinger A, Tolmachev A, Volochnyuk DM, Langer P. Adv. Synth. Catal. 2012; 354: 2495
    • 13b Iaroshenko VO, Gevorgyan A, Mkrtchyan S, Grigoryan T, Movsisyan E, Villinger A, Langer P. ChemCatChem 2015; 7: 316
  • 14 Taylor EC, Yoon C. Synth. Commun. 1988; 18: 1187
    • 15a Alekseyev RS, Amirova SS, Terenin VI. J. Heterocycl. Chem. 2017; 54: 2656
    • 15b Barl NM, Sansiaume-Dagousset E, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2013; 52: 10093
    • 15c Nisha, Bhargava G, Kumar Y. ChemistrySelect 2017; 2: 7827
    • 15d Debenham SD, Chan A, Liu K, Price K, Wood HB. Tetrahedron Lett. 2005; 46: 2283
  • 16 CCDC 2006835 contains the supplementary crystallographic data for compound 5f. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 17 Paek SY, Lee SB, Park DS, Lee WH. WO2014129796A1, 2014
  • 18 Walsh EB, Wamhoff H. Chem. Ber. 1989; 122: 1673
  • 19 Charpentier P, Lobregat V, Levacher V, Dupas G, Queguiner G, Bourguignon J. Tetrahedron Lett. 1998; 39: 4013
  • 20 Duncia JV, Gardner DS, Hynes J, Macor JE, Santella JB, Wu H, Nair SK, Paidi VR, Sarkunam K, Sistla RK, Polimera SR. WO2016210037A1, 2016
  • 21 Baram SG, Shkurko OP, Mamaev VP. Bull. Acad. Sci. USSR 1983; 32: 265