Synthesis 2021; 53(12): 2114-2132
DOI: 10.1055/a-1360-9716
paper

Construction of Spiro[3-azabicyclo[3.1.0]hexanes] via 1,3-Dipolar Cycloaddition of 1,2-Diphenylcyclopropenes to Ninhydrin-Derived Azomethine Ylides

Siqi Wang
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russian Federation
,
Alexander S. Filatov
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russian Federation
,
Stanislav V. Lozovskiy
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russian Federation
,
Stanislav V. Shmakov
b   Saint Petersburg Academic University Nanotechnology Research and Education Centre RAS, ul. Khlopina 8/3, 194021 St. Petersburg, Russian Federation
,
Olesya V. Khoroshilova
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russian Federation
,
Anna G. Larina
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russian Federation
,
Stanislav I. Selivanov
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russian Federation
,
Vitali M. Boitsov
b   Saint Petersburg Academic University Nanotechnology Research and Education Centre RAS, ul. Khlopina 8/3, 194021 St. Petersburg, Russian Federation
c   Pavlov First Saint Petersburg State Medical University, ul. L’va Tolstogo 6/8, 197022 St. Petersburg, Russian Federation
,
Alexander V. Stepakov
a   Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russian Federation
d   Saint Petersburg State Institute of Technology, Moskovskii pr. 26, 190013 St. Petersburg, Russian Federation
› Author Affiliations
We gratefully acknowledge the financial support from the Russian Foundation for Basic Research (Projects nos. 18-015-00443 and 18-33-00464) and the Ministry of Education and Science of the Russian Federation (Project No 0791-2020-0006). S.W. is grateful for the support and funding received from China Scholarship Council.


Dedicated to the memory of Dr. Yuri B. Koptelov

Abstract

The multi-component 1,3-dipolar cycloaddition of ninhydrin, α-amino acids (or peptides), and cyclopropenes for the synthesis of spirocyclic heterocycles containing both 3-azabicyclo[3.1.0]hexane and 2H-indene-1,3-dione motifs has been developed. This method provides easy access to 3-azabicyclo[3.1.0]hexane-2,2′-indenes with complete stereoselectivity and a high degree of atom economy under mild reaction conditions. A broad range of cyclopropenes and α-amino acids have been found to be compatible with the present protocol, which offers an opportunity to create a new library of biologically significant scaffold (3-azabicyclo[3.1.0]hexane). In addition, the сomprehensive study of mechanism of azomethine ylide formation from ninhydrin and sarcosine was performed by means of M11 density functional theory (DFT) calculations. It has been revealed that experimentally observed 1-methylspiro[aziridine-2,2′-indene]-1′,3′-dione is a kinetically controlled product of this reaction and appears to act as a 1,3-dipole precursor. This theoretical study also shed light on the main transformations of the azomethine ylide derived from ninhydrin and sarcosine such as a 1,3-dipolar cycloaddition to cyclopropene dipolarophiles, a dimerization reaction and a (1+5) electrocyclization reaction. The antitumor activity of some synthesized compounds against cervical carcinoma (HeLa­) cell line was evaluated in vitro by MTS-assay.

Supporting Information



Publication History

Received: 06 November 2020

Accepted after revision: 18 January 2021

Accepted Manuscript online:
18 January 2021

Article published online:
15 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Liu H.-W, Walsh CT. In The Chemistry of the Cyclopropyl Group . Rappoport Z. Wiley; New York: 1987: 959-1025
    • 1b Netz N, Opatz T. J. Org. Chem. 2016; 81: 1723
    • 2a Moffat D, Patel S, Day F, Belfield A, Donald A, Rowlands M, Wibawa J, Brotherton D, Stimson L, Clark V, Owen J, Bawden L, Box G, Bone E, Mortenson P, Hardcastle A, Meurs S, Eccles S, Raynaud F, Aherne W. J. Med. Chem. 2010; 53: 8663
    • 2b Lunn G, Banks BJ, Crook R, Feeder N, Pettman A, Sabnis Y. Bioorg. Med. Chem. Lett. 2011; 21: 4608
    • 2c McHardy SF, Heck SD, Guediche S, Kalman M, Allen MP, Tu M, Bryce DK, Schmidt AW, Vanase-Frawley M, Callegari E, Doran S, Grahame NJ, Mclean S, Liras S. Med. Chem. Commun. 2011; 2: 1001
    • 2d Orri M, Abraham L, Giraldi A. J. Sex. Med. 2013; 10: 2484
    • 3a Li T, Liang J, Ambrogelly A, Brennan T, Gloor G, Huisman G, Lalonde J, Lekhal A, Mijts B, Muley S, Newman L, Tobin M, Wong G, Zaks A, Zhang X. J. Am.Chem. Soc. 2012; 134: 6467
    • 3b Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature 2016; 531: 220
  • 4 Micheli F, Cavanni P, Arban R, Benedetti R, Bertani B, Bettati M, Bettelini L, Bonanomi G, Braggio S, Checchia A, Davalli S, Di-Fabio R, Fazzolari E, Fontana S, Marchioro C, Minick D, Negri M, Oliosi B, Read KD, Sartori I, Tedesco G, Tarsi L, Terreni S, Visentini F, Zocchi A, Zonzini L. J. Med. Chem. 2010; 53: 2534
  • 5 Micheli F, Arista L, Bonanomi G, Blaney FE, Braggio S, Capelli AM, Checchia A, Damiani F, Di-Fabio R, Fontana S, Gentile G, Griffante C, Hamprecht D, Marchioro C, Mugnaini M, Piner J, Ratti E, Tedesco G, Tarsi L, Terreni S, Worby A, Ashby CR. Jr, Heidbreder C. J. Med. Chem. 2010; 53: 374
  • 6 Micheli F, Arista L, Bertani B, Braggio S, Capelli AM, Cremonesi S, Di Fabio R, Gelardi G, Gentile G, Marchioro C, Pasquarello A, Provera S, Tedesco G, Tarsi L, Terreni S, Worby A. Heidbreder C. 2010; 53: 7129
  • 7 Bonanomi G, Braggio S, Capelli AM, Checchia A, Di Fabio R, Marchioro C, Tarsi L, Tedesco G, Terreni S, Worby A, Heibreder C, Micheli F. ChemMedChem 2010; 5: 705
  • 8 Patel S, Meilandt WJ, Erickson RI, Chen J, Deshmukh G, Estrada AA, Fuji RN, Gibbons P, Gustafson A, Harris SF, Imperio J, Liu W, Liu X, Liu Y, Lyssikatos JP, Ma C, Yin J, Lewcock JW, Siu M. J. Med. Chem. 2017; 60: 8083
  • 9 Siu M, Ghosh AS, Lewcock JW. J. Med. Chem. 2018; 61: 8078
  • 10 McAllister LA, Butler CR, Mente S, O’Neil SV, Fonseca KR, Piro JR, Cianfrogna JA, Foley TL, Gilbert AM, Harris AR, Helal CJ, Johnson DS, Montgomery JI, Nason DM, Noell S, Pandit J, Rogers BN, Samad TA, Shaffer CL, da Silva RG, Uccello DP, Webb D, Brodney MA. J. Med. Chem. 2018; 61: 3008
  • 11 Velázquez F, Sannigrahi M, Bennett B, Lovey RG, Arasappan A, Bogen S, Nair L, Venkatraman S, Blackman M, Hendrata S, Huang Y, Huelgas R, Pinto P, Cheng K.-C, Tong X, McPhail AT, Njoroge FG. J. Med. Chem. 2010; 53: 3075
  • 12 Jones S, Ahmet J, Ayton K, Ball M, Cockerill M, Fairweather E, Hamilton N, Harper P, Hitchin J, Jordan A, Levy C, Lopez R, McKenzie E, Packer M, Plant D, Simpson L, Simpson P, Sinclair L, Somervaille TC. P, Small H, Spencer GJ, Thomson G, Tonge M, Waddell L, Walsh J, Waszkowycz B, Wigglesworth M, Wiseman DH, Ogilvie D. J. Med. Chem. 2016; 59: 11120
  • 13 Nirogi R, Mohammed AR, Shinde AK, Gagginapally SR, Kancharla DM, Middekadi VR, Bogaraju N, Ravella SR, Singh P, Birangal SR, Subramanian R, Palacharla RC, Benade V, Muddana N, Jayarajan P. J. Med. Chem. 2018; 61: 4993
  • 14 Li X, Zhang Z, Chen Y, Wan H, Sun J, Wang B, Feng B, Hu B, Shi X, Feng J, Zhang L, He F, Bai C, Zhang L, Tao W. ACS Med. Chem. Lett. 2019; 10: 996
  • 15 Scott JS, Barton P, Bennett SN. L, deSchoolmeester J, Godfrey L, Kilgour E, Mayers RM, Packer MJ, Rees A, Schofield P, Selmi N, Swales JG, Whittamore PR. O. Med. Chem. Commun. 2012; 3: 1264
  • 16 Sabbatini FM, Melotto S, Bernasconi G, Bromidge SM, D’Adamo L, Rinaldi M, Savoia C, Mundi C, Di Francesco C, Zonzini L, Costantini VJ. A, Perini B, Valerio E, Pozzan A, Perdonà E, Visentini F, Corsi M, Di Fabio R. ChemMedChem 2011; 6: 1981
  • 17 Zheng Y, Yu X, Lv S, Mykhailiuk PK, Ma Q, Hai L, Wu Y. RSC Adv. 2018; 8: 5114
  • 18 Chen P, Zhu C, Zhu R, Lin Z, Wu W, Jiang H. Org. Biomol. Chem. 2017; 15: 1228
  • 19 Böhmer J, Grigg R, Marchbank JD. Chem. Commun. 2002; 768
    • 20a Ohno H, Takeoka Y, Miyamura K, Kadoh Y, Tanaka T. Org. Lett. 2003; 5: 4763
    • 20b Ohno H, Takeoka Y, Kadoh Y, Miyamura K, Tanaka T. J. Org. Chem. 2004; 69: 4541
  • 21 Pedroni J, Cramer N. J. Am. Chem. Soc. 2017; 139: 12398
  • 22 Veeranna KD, Das KK, Baskaran S. Chem. Commun. 2019; 55: 7647
  • 23 Wang K.-B, Ran R.-Q, Xiu S.-D, Li C.-Y. Org. Lett. 2013; 15: 2374
    • 24a Yuan Y, Zheng Z.-J, Ye F, Ma J.-H, Xu Z, Bai X.-F, Li L, Xu L.-W. Org. Chem. Front. 2018; 5: 2759
    • 24b Deng H, Yang W.-L, Tian F, Tang W, Deng W.-P. Org. Lett. 2018; 20: 4121
    • 24c Filatov AS, Knyazev NA, Molchanov AP, Panikorovsky TL, Kostikov RR, Larina AG, Boitsov VM, Stepakov AV. J. Org. Chem. 2017; 82: 959
    • 24d Filatov AS, Knyazev NA, Ryazantsev MN, Suslonov VV, Larina AG, Molchanov AP, Kostikov RR, Boitsov VM, Stepakov AV. Org. Chem. Front. 2018; 5: 595
    • 24e Filatov AS, Knyazev NA, Shmakov SV, Bogdanov AA, Ryazantsev MN, Shtyrov AA, Starova GL, Molchanov AP, Larina AG, Boitsov VM, Stepakov AV. Synthesis 2019; 51: 713
    • 25a Zimnitskiy NS, Denikaev AD, Barkov AY, Kutyashev IB, Korotaev VY, Sosnovskikh VY. J. Org. Chem. 2020; 85: 8683
    • 25b Kutyashev IB, Barkov AY, Zimnitskiy NS, Korotaev VY, Sosnovskikh VY. Chem. Heterocycl. Comp. 2019; 55: 861
    • 25c Angyal A, Demjén A, Harmat V, Wölfling J, Puskás LG, Kanizsai I. J. Org. Chem. 2019; 84: 4273
    • 25d Kumaran S, Saritha R, Gurumurthy P, Parthasarathy K. Eur. J. Org. Chem. 2020; 2725
    • 25e Prabhakaran P, Rajakumar P. RSC Adv. 2020; 10: 10263
    • 25f Gupta S, Khurana JM. ChemistrySelect 2019; 4: 7200
  • 26 Filatov AS, Wang S, Khoroshilova OV, Lozovskiy SV, Larina AG, Boitsov VM, Stepakov AV. J. Org. Chem. 2019; 84: 7017
  • 27 Panja SK, Karmakar P, Chakraborty J, Ghosh T, Bandyopadhyay C. Tetrahedron Lett. 2008; 49: 4397
    • 28a Beletskii EV, Kuznetsov MA. Russ. J. Org. Chem. 2009; 45: 1229
    • 28b Pankova AS, Kuznetsov MA. Tetrahedron Lett. 2014; 55: 2499
  • 29 Aly MF, Ardill H, Grigg R, Leong-Ling S, Rajviroongit S, Surendrakumar S. Tetrahedron Lett. 1987; 28: 6077
  • 30 Nirmala S, Kamala ET. S, Sudha L, Ramesh E, Raghunathan R. Anal. Sci.: X-Ray Struct. Anal. Online 2008; 24: x101
  • 31 Breslow R, Chang HW. J. Am. Chem. Soc. 1961; 83: 2367
  • 32 Padwa A, Blacklock TJ, Getman D, Hatanaka N, Loza R. J. Org. Chem. 1978; 43: 1481
  • 33 Gilbertson RD, Weakley TJ. R, Haley MM. J. Org. Chem. 2000; 65: 1422
  • 34 D’yakonov IA, Komendantov MI, Gokhmanova I, Kostikov RR. Russ. J. Gen. Chem. 1958; 29: 3848
  • 35 White EH, Winter RE. K, Graeve R, Zirngibl U, Friend EW, Maskill H, Mende U, Kreiling G, Reisenauer HP, Maier G. Chem. Ber. 1981; 114: 3906
  • 36 Li H, Praveen Rao PN, Habeeb AG, Knaus EE. Drug Dev. Res. 2002; 57: 6
  • 37 Crystallographic data for compound 8a have been deposited at the Cambridge Crystallographic Data Centre (Deposition No. CCDC-1840079) and can be obtained free of charge via www.ccdc.cam.ac.uk/structures
  • 38 Peveratti R, Truhlar DG. J. Phys. Chem. Lett. 2011; 2: 2810
  • 39 Dunning TH. J. Chem. Phys. 1989; 90: 1007
  • 40 Cossi M, Rega N, Scalmani G, Barone V. J. Comput. Chem. 2003; 24: 669
  • 41 Schlegel HB. J. Comput. Chem. 1982; 3: 214
  • 42 Fukui KJ. J. Phys. Chem. 1970; 74: 4161
  • 43 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ő, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision C.01 . Gaussian; Wallingford CT: 2013