Synlett 2021; 32(15): 1494-1512
DOI: 10.1055/a-1349-3543
cluster
Modern Nickel-Catalyzed Reactions

Biaryl Construction Based on Nickel-Catalyzed C–O Bond Activation

Haiyan Diao
a   School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. of China
,
Zhangjie Shi
b   Department of Chemistry, Fudan University, Shanghai, 200438, P. R. of China
,
Feng Liu
a   School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. of China
b   Department of Chemistry, Fudan University, Shanghai, 200438, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (NSFC) (21988101, 21761132027, 22071029, U19B6002), the Science and Technology Commission of Shanghai Municipality (19XD1400800, 18JC1411300), the Shanghai Municipal Education Commission (2017-01-07-00-07-E00058), the Key-Area Research and Development Program of Guangdong Province (2020B010188001), and the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development.


Abstract

Nickel-catalyzed carbon–oxygen bond activation is one of the most powerful strategies for the direct construction of various biaryl compounds. Under nickel catalysis, efficiently produced and naturally abundant arenol-based electrophiles can be activated and coupled with different aryl nucleophiles, including nucleophiles containing magnesium, zinc, boron, etc., to produce biaryl structural units. This Account summarizes recent progress on biaryl synthesis via nickel-catalyzed C–O bond activation.

1 Introduction

2 Coupling of Arenols and Arenol Derivatives with Aryl Magnesium Reagents

3 Coupling of Arenols and Arenol Derivatives with Aryl Zinc Reagents

4 Coupling of Arenols and Arenol Derivatives with Aryl Boron Reagents

5 Others

6 Conclusion



Publication History

Received: 01 November 2020

Accepted after revision: 11 January 2021

Accepted Manuscript online:
11 January 2021

Article published online:
28 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Metal-Catalyzed Cross-Coupling Reactions . Diederich F, Stang PJ. Wiley-VCH; Weinheim: 1998
    • 1b Cross Coupling Reactions, A Practical Guide . Miyaura N. Springer Verlag; Berlin: 2002
    • 2a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 2b Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 2c Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
  • 3 Kang C, Zhang X.-S, Shi Z.-J. Pure Appl. Chem. 2014; 86: 361
    • 4a Li H, Shi Z.-J. In Homogeneous Catalysis for Unreactive Bond Activation . Shi Z.-J. John Wiley & Sons; Hoboken: 2015: 575
    • 4b Zhang Y.-F, Shi Z.-J. Acc. Chem. Res. 2019; 52: 161
    • 4c Cao Z.-C, Xu P.-L, Luo Q.-Y, Li X.-L, Yu D.-G, Fang H, Shi Z.-J. Chin. J. Chem. 2019; 37: 781
    • 4d Shi W.-J, Shi Z.-J. Chin. J. Chem. 2018; 36: 183
    • 4e Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
    • 4f Shi W.-J, Li X.-L, Li Z.-W, Shi Z.-J. Org. Chem. Front. 2016; 3: 375
    • 4g Shi W.-J, Zhao H.-W, Wang Y, Cao Z.-C, Zhang L.-S, Yu D.-G, Shi Z.-J. Adv. Synth. Catal. 2016; 358: 2410
    • 4h Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
    • 4i Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
    • 4j Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 4k Liu F, Jiang H.-J, Zhou Y, Shi Z.-J. Chin. J. Chem. 2020; 38: 855
    • 5a Tobisu M, Chatani N. Catalytic Transformations Involving the Activation of sp2 Carbon–Oxygen Bonds. In Inventing Reactions. Gooßen LJ. Springer-Verlag; Berlin: 2013: 35-53
    • 5b Tobisu M, Chatani N. Nickel-Catalyzed Cross-Coupling Reactions of Unreactive Phenolic Electrophiles via C–O Bond Activation. In Ni- and Fe-Based Cross-Coupling Reactions. Correa A. Springer International Publishing; Switzerland: 2017: 129-156
    • 5c Zarate C, van Gemmeren M, Somerville RJ, Martin R. Adv. Organomet. Chem. 2016; 66: 143
    • 5d Lin C, Gao F, Shen L. Adv. Synth. Catal. 2019; 361: 3915
    • 5e Li X, Hong X. J. Org. Chem. 2018; 864: 68
    • 5f Tehetena M, Garg NK. Org. Process Res. Dev. 2013; 17: 29
    • 5g Correa A, Cornella J, Martin R. Angew. Chem. Int. Ed. 2013; 52: 1878
    • 5h Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 5i Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 5j Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Chem. Rev. 2020; 120: 6124
    • 5k Zeng H.-Y, Qiu Z, Domínguez-Huerta A, Hearne Z, Chen Z, Li C.-J. ACS Catal. 2017; 7: 510
    • 5l Qiu Z, Li C. Chem. Rev. 2020; 120: 10454
    • 5m Tang J, Liu LL, Yang S, Cong X, Luo M, Zeng X. J. Am. Chem. Soc. 2020; 142: 7715
  • 6 Hayashi T, Katsuro Y, Okamoto Y, Kumada M. Tetrahedron Lett. 1981; 22: 4449
  • 7 Sengupta S, Leite M, Raslan DS, Quesnelle C, Snieckus V. J. Org. Chem. 1992; 57: 4066
  • 8 Yoshikai N, Matsuda H, Nakamura E. J. Am. Chem. Soc. 2009; 131: 9590
    • 9a Yoshikai N, Mashima H, Nakamura E. J. Am. Chem. Soc. 2005; 127: 17978
    • 9b Wang C, Xi Z. Chem. Soc. Rev. 2007; 36: 1395
  • 10 Macklin TK, Snieckus V. Org. Lett. 2005; 7: 2519
  • 11 Guan B.-T, Lu X.-Y, Zheng Y, Yu D.-G, Wu T, Li K.-L, Li B.-J, Shi Z.-J. Org. Lett. 2010; 12: 396
  • 12 Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
  • 13 Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
  • 14 Ogawa H, Minami H, Ozaki T, Komagawa S, Wang C, Uchiyama M. Chem. Eur. J. 2015; 21: 13904
    • 15a Guan B.-T, Xiang S.-K, Wu T, Sun Z.-P, Wang B.-Q, Zhao K.-Q, Shi Z.-J. Chem. Commun. 2008; 12: 1437
    • 15b Xie L.-G, Wang Z.-X. Chem. Eur. J. 2011; 17: 4972
    • 15c Iglesias MJ, Prieto A, Nicasio MC. Org. Lett. 2012; 14: 4318
    • 15d Zhang J, Xu J, Xu Y, Sun H, Shen Q, Zhang Y. Organometallics 2015; 34: 5792
  • 16 Yang Z.-K, Xu N.-X, Takita R, Muranaka A, Wang C, Uchiyama M. Nat. Commun. 2018; 9: 1587
  • 17 Ambre R, Yang H, Chen W.-C, Yap GP. A, Jurca T, Ong T.-G. Eur. J. Inorg. Chem. 2019; 30: 3511
    • 18a Amaike K, Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 13573
    • 18b Gellis A, Kovacic H, Boufatah N, Vanelle P. Eur. J. Med. Chem. 2008; 43: 1858
  • 19 Kurata Y, Otsuka S, Fukui N, Nogi K, Yorimitsu H, Osuka A. Org. Lett. 2017; 19: 1274
  • 20 Zhao F, Yu D.-G, Zhu R.-Y, Xi Z, Shi Z.-J. Chem. Lett. 2011; 40: 1001
  • 21 Wenkert E, Michelotti EL, Swindell CS, Tingoli M. J. Org. Chem. 1984; 49: 4894
  • 22 Yu D.-G, Li B.-J, Zheng S.-F, Guan B.-T, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2010; 49: 4566
  • 23 Li B.-J, Li Y.-Z, Lu X.-Y, Liu J, Guan B.-T, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 10124
  • 24 Wang C, Ozaki T, Takita R, Uchiyama M. Chem. Eur. J. 2012; 18: 3482
  • 25 Tao J.-L, Wang Z.-X. Eur. J. Org. Chem. 2015; 6534
  • 26 Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1996; 60: 1060
  • 27 Diver C, Lawrance GA. J. Chem. Soc., Dalton Trans. 1988; 931
  • 28 Saito S, Sakai M, Miyaura N. Tetrahedron Lett. 1996; 37: 2993
  • 29 Tang Z.-Y, Hu Q.-S. J. Am. Chem. Soc. 2004; 126: 3058
  • 30 Inaloo ID, Majnooni S, Eslahi H, Esmaeilpour M. ACS Omega 2020; 5: 7406
  • 31 Entz ED, Russell JE. A, Hooker LV, Neufeldt SR. J. Am. Chem. Soc. 2020; 142: 15454
  • 32 Zhao Y.-L, Li Y, Li Y, Ga L.-X, Han F.-S. Chem. Eur. J. 2010; 16: 4991
  • 33 Chen H, Huang Z, Hu X, Tang G, Xu P, Zhao Y, Cheng C.-H. J. Org. Chem. 2011; 76: 2338
    • 34a Takise R, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2014; 53: 6791
    • 34b Correa A, Martin R. J. Am. Chem. Soc. 2014; 136: 7253
    • 34c Zarate C, Martin R. J. Am. Chem. Soc. 2014; 136: 2236
    • 34d Correa A, León T, Martin R. J. Am. Chem. Soc. 2014; 136: 1062
    • 34e Meng L, Kamada Y, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2013; 52: 10048
    • 34f Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 169
    • 34g Shimasaki T, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2010; 49: 2929
    • 34h Quasdorf KW, Tian X, Garg NK. J. Am. Chem. Soc. 2008; 130: 14422
    • 34i Guan B.-T, Wang Y, Li B.-J, Yu D.-G, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
  • 35 Li Z, Zhang S.-L, Fu Y, Guo Q.-X, Liu L. J. Am. Chem. Soc. 2009; 131: 8815
  • 36 Molander GA, Beaumard F. Org. Lett. 2010; 12: 4022
  • 37 Xu M, Li X, Sun Z, Tu T. Chem. Commun. 2013; 49: 11539
    • 38a Snieckus V. Chem. Rev. 1990; 90: 879
    • 38b Smith MB, March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed. John Wiley & Sons; Hoboken: 2007: 668
  • 39 Quasdorf KW, Riener M, Petrova KV, Garg NK. J. Am. Chem. Soc. 2009; 131: 17748
  • 40 Antoft-Finch A, Blackburn T, Snieckus V. J. Am. Chem. Soc. 2009; 131: 17750
  • 41 Li B.-J, Xu L, Wu Z.-H, Guan B.-T, Sun C.-L, Wang B.-Q, Shi Z.-J. J. Am. Chem. Soc. 2009; 131: 14656
  • 42 Xu L, Li B.-J, Wu Z.-H, Lu X.-Y, Guan B.-T, Wang B.-Q, Zhao K.-Q, Shi Z.-J. Org. Lett. 2010; 12: 884
  • 43 Baghbanzadeh M, Pilger C, Kappe CO. J. Org. Chem. 2011; 76: 1507
  • 44 Quasdorf KW, Antoft-Finch A, Liu P, Silberstein AL, Komaromi A, Blackburn T, Ramgren SD, Houk KN, Snieckus V, Garg NK. J. Am. Chem. Soc. 2011; 133: 6352
  • 45 Kuwano R, Shimizu R. Chem. Lett. 2011; 40: 913
  • 46 Ohtsuki A, Yanagisawa K, Furukawa T, Tobisu M, Chatani N. J. Org. Chem. 2016; 81: 9409
  • 47 Purohit P, Seth K, Asim K, Chakraborti AK. ACS Catal. 2017; 7: 2452
  • 48 Barth EL, Davis RM, Beromi MM, Walden AG, Balcells D, Brudvig GW, Dardir AH, Hazari N, Lant HM. C, Mercado BQ, Peczak IL. Organometallics 2019; 38: 3377
  • 49 Tobisu M, Shimasaki T, Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
  • 50 Tobisu M, Yasutome A, Kinuta H, Nakamura K, Chatani N. Org. Lett. 2014; 16: 5572
  • 51 Nakamura K, Tobisu M, Chatani N. Org. Lett. 2015; 17: 6142
  • 52 Schwarzer MC, Konno R, Hojo T, Ohtsuki A, Nakamura K, Yasutome A, Takahashi H, Shimasaki T, Tobisu M, Chatani N, Mori S. J. Am. Chem. Soc. 2017; 139: 10347
  • 53 Li X.-J, Zhang J.-L, Geng Y, Jin Z. J. Org. Chem. 2013; 78: 5078
  • 54 Yu D.-G, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 7097
    • 55a Chen G.-J, Huang J, Gao L.-X, Han F.-S. Chem. Eur. J. 2011; 17: 4038
    • 55b Li S.-M, Huang J, Chen G.-J, Han F.-S. Chem. Commun. 2011; 47: 12840

      For critical reviews, see:
    • 56a Lithium Compounds in Organic Synthesis . Luisi R, Capriati V. Wiley-VCH; Weinheim: 2014
    • 56b Reich HJ. Chem. Rev. 2013; 113: 7130
    • 56c Stereochemical Aspects of Organolithium Compounds. In Topics in Stereochemistry, Vol. 26. Gawley RE. Wiley; New York: 2010
    • 56d Xi Z. Acc. Chem. Res. 2010; 43: 1342
    • 56e Rappoport Z, Marek I. The Chemistry of Organolithium Compounds . Wiley-VCH; Weinheim: 2006
    • 56f Clayden J. Organolithiums: Selectivity for Synthesis. Pergamon; New York: 2002
    • 56g Lucht BL, Collum DB. Acc. Chem. Res. 1999; 32: 1035
    • 57a Yamamura M, Moritani I, Murahashi S.-I. J. Organomet. Chem. 1975; 91: C39
    • 57b Murahashi S.-I, Yamamura M, Yanagisawa K, Mita N, Kondo K. J. Org. Chem. 1979; 44: 2408
  • 58 Heijnen D, Gualtierotti J.-B, Hornillos V, Feringa BL. Chem. Eur. J. 2016; 22: 3991
  • 59 Yang Z.-K, Wang D.-Y, Minami H, Ogawa H, Ozaki T, Saito T, Miyamoto K, Wang C, Uchiyama M. Chem. Eur. J. 2016; 22: 15693
  • 60 Ogawa H, Yang Z.-K, Minami H, Kojima K, Saito T, Wang C, Uchiyama M. ACS Catal. 2017; 7: 3988
    • 61a Muto K, Yamaguchi J, Lei A, Itami K. J. Am. Chem. Soc. 2013; 135: 16384
    • 61b Xu H, Muto K, Yamaguchi J, Zhao C, Itami K, Musaev DG. J. Am. Chem. Soc. 2014; 136: 14834
  • 62 Muto K, Hatakeyama T, Yamaguchi J, Itami K. Chem. Sci. 2015; 6: 6792
  • 63 Wang Y, Wu S.-B, Shi W.-J, Shi Z.-J. Org. Lett. 2016; 18: 2548
  • 64 Wang J, Ferguson DM, Kalyani D. Tetrahedron 2013; 69: 5780
  • 65 Iranpoor N, Panahi F. Org. Lett. 2015; 17: 214
  • 66 Cao Z.-C, Luo Q.-Y, Shi Z.-J. Org. Lett. 2016; 18: 5978
  • 67 Chen Q, Wu A, Qin S, Zeng M, Le Z, Yan Z, Zhang H. Adv. Synth. Catal. 2018; 360: 3239
  • 68 Wang T.-H, Ambre R, Wang Q, Lee W.-C, Wang P.-C, Liu Y, Zhao L, Ong T.-G. ACS Catal. 2018; 8: 11368
  • 69 Kang K, Huang L, Weix DJ. J. Am. Chem. Soc. 2020; 142: 10634
  • 70 Xiong B, Li Y, Wei Y, Kramer S, Zhong L. Org. Lett. 2020; 22: 6334