Synlett 2021; 32(08): 810-813
DOI: 10.1055/a-1346-5650
letter

Highly Efficient Synthesis of Digoxin

Hui Liu
,
Si-Yu Zhou
,
Jin-Xi Liao
,
Yuan-Hong Tu
,
Jian-Song Sun
This work was financially supported by the National Natural Science Foundation of China (21867012, 21877055, and 21762024) and the Natural Science Foundation of Jiangxi Province (20161ACB20005, 20171BCB23036, and 20171BAB203008).


Abstract

Taking advantage of the reliable stereocontrol capability of DMNPA group via long-distance-participation (LDP) effect as well as the mild and efficient deprotection conditions, the first and highly efficient synthesis of digoxin was achieved through a nine-step longest linear sequence with 41% overall yield.

Supporting Information



Publication History

Received: 23 November 2020

Accepted after revision: 05 January 2021

Accepted Manuscript online:
05 January 2021

Article published online:
27 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Eichhorn EJ, Gheorghiade M. Prog. Cardiovasc. Dis. 2002; 44: 251
    • 1b Fu J, Wu Z, Zhang L. Prog. Mol. Biol. Transl. Sci. 2019; 163: 487
  • 2 Prassas I, Diamandis EP. Nat. Rev. Drug Discovery 2008; 7: 926
  • 3 Cechova P, Berka K, Kubala M. J. Chem. Inf. Model. 2016; 56: 2434
  • 4 Dostanic-Larson I, van Huysse JW, Lorenz JN, Lingrel JB. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 15845
  • 5 Frese S, Frese-Schaper M, Andres A.-C, Miescher D, Zumkehr B, Schmid RA. Cancer Res. 2006; 66: 5867
  • 6 Roberts DM, Gallapatthy G, Dunuwille A, Chan BS. Br. J. Clin. Pharmacol. 2016; 81: 488
    • 7a Borovika A, Nagorny P. J. Carbohydr. Res. 2012; 31: 255
    • 7b Bennett C, Galan MC. Chem. Rev. 2018; 118: 7931
  • 8 Wiesner K, Tsai TY. R, Jin H. Helv. Chim. Acta 1985; 68: 300

    • For selected examples, see:
    • 9a Tanaka H, Sakamoto H, Sano A, Nakamura S, Nakajima M, Hashimoto S. Chem. Commun. 1999; 1259
    • 9b Wang H.-YL, Wu B, Zhang Q, Kang S.-W, Rojanasakul Y, O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 259
    • 9c Wang H.-YL, Rojanasakul Y, O’Doherty GA. ACS Med. Chem. Lett. 2011; 2: 264
    • 9d Hinds JW, McKenna SB, Sharif EU, Wang H.-YL, Akhmedov NG, O’Doherty GA. ChemMedChem 2013; 8: 63
    • 9e Zeng J, Sun G, Wang R, Zhang S, Teng S, Liao Z, Meng L, Wan Q. Org. Chem. Front. 2017; 4: 2450
    • 10a McDonald FE, Reddy KS. Angew. Chem. Int. Ed. 2001; 40: 3653
    • 10b Zhou M, O’Doherty GA. Org. Lett. 2006; 8: 4339
    • 10c Zhou M, O’Doherty GA. J. Org. Chem. 2007; 72: 2485
    • 10d Ma Y, Li Z, Shi H, Zhang J, Yu B. J. Org. Chem. 2011; 76: 9748
    • 11a Ma X, Yu B, Hui Y, Miao Z, Ding J. Carbohydr. Res. 2001; 334: 159
    • 11b Zeng J, Wang R, Zhang S, Fang J, Liu S, Sun G, Xu B, Xiao Y, Fu D, Zhang W, Hu Y, Wan Q. J. Am. Chem. Soc. 2019; 141: 8509
    • 11c Liu M, Liu K.-M, Xiong D.-C, Zhang H, Li T, Li B, Qin X, Bai J, Ye X.-S. Angew. Chem. Int. Ed. 2020; 59: 15204
    • 12a Liu H, Zhou S.-Y, Wen G.-E, Liu X.-X, Liu D.-Y, Zhang Q.-J, Schmidt RR, Sun J.-S. Org. Lett. 2019; 21: 8049
    • 12b Liu H, Hansen T, Zhou S.-Y, Wen G.-E, Liu X.-X, Zhang Q.-J, Codee JD. C, Schmidt RR, Sun J.-S. Org. Lett. 2019; 21: 8713
  • 13 Zhang J, Shi H, Yu B. Chem. Commun. 2012; 48: 8679
  • 14 Yu B. Acc. Chem. Res. 2018; 51: 507
    • 15a Yu B, Sun J, Yang X. Acc. Chem. Res. 2012; 45: 1227
    • 15b Zhu D, Yu B. Chin. J. Chem. 2018; 36: 681
  • 16 Liu H, Liao J.-X, Hu Y, Tu Y.-H, Sun J.-S. Org. Lett. 2016; 18: 1294
  • 17 van der Vorm S, van Hengst JM. A, Bakker M, Overkleeft HS, van der Marel GA, Codee JD. C. Angew. Chem. Int. Ed. 2018; 57: 8240
  • 18 General Procedure for the Digitoxosylation To a solution of donor 2 (0.05 mmol) and digoxigenin (2.0 equiv) in dry CH2Cl2 (2.0 mL) was added freshly activated 4 Å MS or AW MS at room temperature under N2 atmosphere. After being stirred at the same temperature for 30 min, Ph3PAuOTf (0.2 equiv) was added at room temperature (or 0 °C and –10 °C) under N2 atmosphere. The stirring was continued at room temperature (or at 0 °C) until TLC showed that all donor was consumed. Filtration was followed by concentration under reduced pressure to give a residue, which was further purified by silica gel column chromatography to provide the glycosylation products.
  • 19 Analytic Data for Digoxin (1) White solid; [α]D 25 +3.0 (c 0.4, CHCl3). 1H NMR (400 MHz, DMSO-d 6): δ = 5.82 (t, J = 1.6 Hz, 1 H), 4.93 (AB, 2 H), 4.82 (dd, J = 2.0, 9.2 Hz, 2 H), 4.78 (dd, J = 2.0, 9.6 Hz, 1 H), 4.62–4.59 (m, 3 H), 4.25 (dd, J = 1.2, 3.2 Hz, 1 H), 4.19 (dd, J = 0.8, 2.8 Hz, 1 H), 4.10 (s, 1 H), 4.06–4.03 (m, 2 H), 3.89 (br s, 1 H), 3.86–3.83 (m, 1 H), 3.75–3.60 (m, 3 H), 3.26–3.20 (m, 2 H), 3.14 (dt, J = 2.0, 9.6 Hz, 2 H), 3.02 (ddd, J = 2.8, 6.8, 9.6 Hz, 1 H), 1.98–1.29 (m, 23 H), 1.17–1.02 (m, 3 H), 1.13 (d, J = 6.4 Hz, 3 H), 1.12 (d, J = 6.4 Hz, 3 H), 1.10 (d, J = 6.0 Hz, 3 H), 0.84 (s, 3 H), 0.65 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 176.9, 174.0, 115.8, 99.1, 99.0, 95.3, 84.3, 81.9, 81.6, 73.3, 73.0, 72.7, 72.1, 69.1, 67.6, 67.5, 67.0, 66.3, 66.1, 55.7, 45.2, 40.5, 38.4, 38.3, 37.9, 36.3, 34.7, 32.4, 31.6, 30.2, 29.7, 29.6, 26.8, 26.4, 26.0, 23.7, 21.3, 18.4, 18.0, 9.4. HRMS (ESI): m/z calcd for C41H64O14Na [M + Na]+: 803.4188; found: 803.4184.