Synlett 2021; 32(13): 1303-1308
DOI: 10.1055/a-1344-5998
cluster account
Perspectives on Organoheteroatom and Organometallic Chemistry

Recent Progress in the Gold-Catalyzed Annulations of Ynamides with Isoxazole Derivatives via α-Imino Gold Carbenes

Long Li
a   Institute of New Materials & Industry Technology, College of Chemistry &Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
,
Wen-Feng Luo
a   Institute of New Materials & Industry Technology, College of Chemistry &Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
,
Long-Wu Ye
b   The Key Laboratory for Chemical Biology of Fujian Province & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (21772161 and 21622204) and Wenzhou University.


Abstract

During the past two decades, gold-catalyzed nitrene-transfer reactions via α-imino gold carbenes have received extensive attention, as this strategy provides rapid access to nitrogen-containing molecules with high efficiency. In this review, we focus on recent progress in gold-catalyzed formal annulations of ynamides with isoxazole derivatives as nitrene-transfer reagents via α-imino gold carbenes in atom-economic and rapid construction of N-heterocycles.



Publication History

Received: 13 November 2020

Accepted after revision: 02 January 2021

Accepted Manuscript online:
02 January 2021

Article published online:
05 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For recent selected reviews, see:
    • 1a Hu F, Szostak M. Adv. Synth. Catal. 2015; 357: 2583
    • 1b Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 1c Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395

      For selected examples, see:
    • 2a Wang J, Wu Y, Ma C, Fiorin G, Wang J, Pinto LH, Lamb RA, Klein ML, DeGrado WF. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 1315
    • 2b Jensen AA, Plath N, Pedersen MH. F, Isberg V, Krall J, Wellendorph P, Stensbøl TB, Gloriam ED, Krogsgaard-Larsen P, Frølund B. J. Med. Chem. 2013; 56: 1211
    • 2c Yu L.-F, Eaton JB, Fedolak A, Zhang H.-K, Hanania T, Brunner D, Lukas RJ, Kozikowski AP. J. Med. Chem. 2012; 55: 9998
    • 2d Hewings DS, Wang M, Philpott M, Fedorov O, Uttarkar S, Filippakopoulos P, Picaud S, Vuppusetty C, Mardsen B, Knapp S, Conway SJ, Heightman TD. J. Med. Chem. 2011; 54: 6761
    • 2e Bissantz KC, Kuhn B, Stahl M. J. Med. Chem. 2010; 53: 5061 ; corrigendum: J. Med. Chem. 2010, 53, 6241
    • 2f Baraldi PG, Barco A, Benetti S, Pollini GP, Simoni D. Synthesis 1987; 857

      For recent selected examples, see:
    • 3a Li Y, Gao M, Liu B, Xu B. Org. Chem. Front. 2017; 4: 445
    • 3b Gao P, Li H.-X, Hao X.-H, Jin D.-P, Chen D.-Q, Yan X.-B, Wu X.-X, Song X.-R, Liu X.-Y, Liang Y.-M. Org. Lett. 2014; 16: 6298
    • 3c Griesbeck AG, Franke M, Neudörfl J, Kotaka H. Beilstein J. Org. Chem. 2011; 7: 127
    • 3d Debleds O, Gayon E, Ostaszuk E, Vrancken E, Campagne J.-M. Chem. Eur. J. 2010; 16: 12207
    • 3e Tang S, He J, Sun Y, He L, She X. Org. Lett. 2009; 11: 3982
    • 3f Hansen TV, Wu P, Fokin VV. J. Org. Chem. 2005; 70: 7761
    • 3g Pinho e Melo TM. V. Curr. Org. Chem. 2005; 9: 925

      For recent selected examples, see:
    • 4a Rostovskii NV, Ruvinskaya JO, Novikov MS, Khlebnikov AF, Smetanin IA, Agafonova AV. J. Org. Chem. 2017; 82: 256
    • 4b Galenko EE, Galenko AV, Khlebnikov AF, Novikov MS. RSC Adv. 2015; 5: 18172
    • 4c Pusch S, Opatz T. Org. Lett. 2014; 16: 5430
    • 4d Coffman KC, Pallazo TA, Hartley TP, Fettinger JC, Tantillo DJ, Kurth MJ. Org. Lett. 2013; 15: 2062
    • 4e Manning JR, Davies HM. L. J. Am. Chem. Soc. 2008; 130: 8602

      For reviews, see:
    • 5a Ye L.-W, Zhu X.-Q, Sahani RL, Xu Y, Qian P.-C, Liu R.-S. Chem. Rev. 2020; in press DOI: 10.1021/acs.chemrev.0c00348.
    • 5b Sahani RL, Ye L.-W, Liu R.-S. Adv. Organomet. Chem. 2020; 73: 195
    • 5c Aguilar E, Santamaría J. Org. Chem. Front. 2019; 6: 1513
    • 5d Li L, Tan T.-D, Zhang Y.-Q, Liu X, Ye L.-W. Org. Biomol. Chem. 2017; 15: 8483
    • 5e Davies PW, Garzón M. Asian J. Org. Chem. 2015; 4: 694

      For selected reviews on ynamide reactivity, see:
    • 6a Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
    • 6b Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
    • 6c Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
    • 6d Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
    • 6e Evano G, Theunissen C, Lecomte M. Aldrichimica Acta 2015; 48: 59
    • 6f Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560
    • 6g DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
    • 6h Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 7a Zhou A.-H, He Q, Shu C, Yu Y.-F, Liu S, Zhao T, Zhang W, Lu X, Ye L.-W. Chem. Sci. 2015; 6: 1265
    • 7b Xiao X.-Y, Zhou A.-H, Shu C, Pan F, Li T, Ye L.-W. Chem. Asian J. 2015; 10: 1854
    • 8a Jin H, Huang L, Xie J, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 794
    • 8b Jin H, Tian B, Song X, Xie J, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 12688
    • 8c Zeng Z, Jin H, Rudolph M, Rominger MF, Hashmi AS. K. Angew. Chem. Int. Ed. 2018; 57: 16549
    • 8d Song L, Tian X, Rudolph M, Romingera F, Hashmi AS. K. Chem. Commun. 2019; 55: 9007

    • For other related gold-catalyzed reactions of ynamides with isoxazole derivatives, see:
    • 8e Zeng Z, Jin H, Sekine K, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2018; 57: 6935
    • 8f Tian X, Song L, Farshadfar K, Rudolph M, Rominger F, Oeser T, Ariafard A, Hashmi AS. K. Angew. Chem. Int. Ed. 2020; 59: 471
    • 9a Giri SS, Liu R.-S. Chem. Sci. 2018; 9: 2991
    • 9b Tsai M.-H, Wang C.-Y, Raja AS. K, Liu R.-S. Chem. Commun. 2018; 54: 10866
    • 9c Jadhav PD, Lu X, Liu R.-S. ACS Catal. 2018; 8: 9697
    • 9d Hsu Y.-C, Hsieh S.-A, Liu R.-S. Chem. Eur. J. 2019; 25: 5288

    • For other related gold-catalyzed reactions of alkynes with isoxazole derivatives, see:
    • 9e Sahani RL, Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 1026
    • 9f Sahani RL, Liu R.-S. Angew. Chem. Int. Ed. 2017; 56: 12736
    • 9g Mokar BD, Jadhav PD, Pandit YB, Liu R.-S. Chem. Sci. 2018; 9: 4488
    • 9h Singh RR, Skaria M, Chen L.-Y, Cheng M.-J, Liu R.-S. Chem. Sci. 2019; 10: 1201

      For selected examples, see:
    • 10a Vanjari R, Dutta S, Prabagar B, Gandon V, Sahoo AK. Chem. Asian J. 2019; 14: 4828
    • 10b Chen C, Cui S. J. Org. Chem. 2019; 84: 12157
    • 10c Xu W, Zhao J, Li X, Liu Y. J. Org. Chem. 2018; 83: 15470

      For other transition-metal-catalyzed reaction of isoxazoles with heteroatom-substituted alkynes, see:
    • 11a Zhu X.-Q, Wang Z.-S, Hou B.-S, Zhang H.-W, Deng C, Ye L.-W. Angew. Chem. Int. Ed. 2020; 59: 1666
    • 11b Zhu X.-Q, Yuan H, Sun Q, Zhou B, Han X.-Q, Zhang Z.-X, Lu X, Ye L.-W. Green Chem. 2018; 20: 4287
    • 11c Zhu X.-Q, Sun Q, Zhang Z.-X, Zhou B, Xie P.-X, Shen W.-B, Lu X, Zhou J.-M, Ye L.-W. Chem. Commun. 2018; 54: 7435
    • 11d Shen W.-B, Xiao X.-Y, Sun Q, Zhou B, Zhu X.-Q, Yan J.-Z, Lu X, Ye L.-W. Angew. Chem. Int. Ed. 2017; 56: 605
    • 11e Han Y.-P, Li X.-S, Sun Z, Zhu X.-Y, Li M, Song X.-R, Liang Y.-M. Adv. Synth. Catal. 2017; 359: 2735
    • 12a Zeng Z, Jin H, Xie J, Tian B, Rudolph M, Rominger F, Hashmi AS. K. Org. Lett. 2017; 19: 1020
    • 12b Xu W, Wang G, Sun N, Liu Y. Org. Lett. 2017; 19: 3307
    • 12c Xu W, Chen Y, Wang A, Liu Y. Org. Lett. 2019; 21: 7613