Synthesis 2021; 53(10): 1821-1827
DOI: 10.1055/a-1344-2126
paper

Construction of α-Alkylated Amines by Iridium Complex-Catalyzed One-Step Transfer Hydrogenation of C=C and C=N Bonds

Yanping Xia
,
Lu Ouyang
,
Jianhua Liao
,
Xiao Yang
,
Renshi Luo
The authors thank the National Natural Science Foundation of China (21962004, 21562004), Jiangxi Provincial Department of Science and Technology (20192BAB203004), the Emergency Research Project for Gannan Medical University (YJ202027), and the Fundamental Research Funds for Gannan Medical University (QD201810) for financial support.


Abstract

Hydrogenation of C=C bond and reductive amination are important transformations utilized in chemistry. An environmentally friendly, efficient, and facile one-pot transfer hydrogenation of C=C bond of enones and reductive amination of C=N bond of imines are reported using iridium complex as catalysts and formic acid as hydrogen source in aqueous medium. In this catalytic system, a wide range of α-alkylated amines were obtained in excellent yields by one-pot transfer hydrogenation of C=C bond and reductive amination. The practical application of this protocol is characterized by gram-scale transformation.

Supporting Information



Publication History

Received: 17 November 2020

Accepted after revision: 30 December 2020

Publication Date:
30 December 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kim H, Chang S. ACS Catal. 2016; 6: 2341
    • 1b Jiao J, Murakami K, Itami K. ACS Catal. 2016; 6: 610
    • 1c Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 1d Wang Y, Furukawa S, Fu X, Yan N. ACS Catal. 2020; 10: 311
    • 1e Trowbridge A, Walton SA, Guant MJ. Chem. Rev. 2020; 120: 2613
    • 2a Shinde GB, Niphade NC, Deshmukh SP, Toche RB, Mathad VT. Org. Process Res. Dev. 2011; 15: 455
    • 2b Rische T, Eibracht P. Tetrahedron 1999; 55: 1915
    • 3a Mercea DM, Howlett MG, Piascik AD, Scott DJ, Steven A, Ashley AE, Fuchter MJ. Chem. Commun. 2019; 55: 7077
    • 3b Graves CR, Scheidt KA, Nguyen ST. Org. Lett. 2006; 8: 1229
    • 4a Tang R, Shao Z, Wang J, Liu Z, Li Y.-M, Shen Y. J. Org. Chem. 2019; 84: 8177
    • 4b Hensel A, Nagura K, Delvos LB, Oestreich M. Angew. Chem. Int. Ed. 2014; 53: 4964
    • 4c Adrian JC, Barkin JL, Fox RJ, Chick JE, Hunter AD, Nicklow RA. J. Org. Chem. 2000; 65: 6264
    • 5a Dçrfler J, Doye S. Angew. Chem. Int. Ed. 2013; 52: 1806
    • 5b Dçrfler J, Preuß T, Schischko A, Schmidtmann M, Doye S. Angew. Chem. Int. Ed. 2014; 53: 7918
    • 5c Kaiser D, Tona V, Gonçalves CR, Shaaban S, Oppedisano A, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 14639
    • 5d Hanna S, Holder JC, Hartwig JF. Angew. Chem. Int. Ed. 2019; 58: 3368
    • 5e Chen C, Dong X.-Q, Zhang X. Org. Chem. Front. 2016; 3: 1359
    • 6a Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
    • 6b Noyori R. Adv. Synth. Catal. 2003; 345: 15
    • 6c Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 6d Lan X, Wang T. ACS Catal. 2020; 10: 2764
    • 7a Astruc D, Wang D. Chem. Rev. 2015; 115: 6621
    • 7b Bigler R, Mezzetti A. Org. Process Res. Dev. 2016; 20: 253
    • 7c Tan Z, Yang J, Liang Y, Jiang H, Zhang M. iScience 2020; 23: 101003
    • 8a Ai W, Zhong R, Liu X, Liu Q. Chem. Rev. 2019; 119: 2876
    • 8b Alig L, Fritz M, Schneider S. Chem. Rev. 2019; 119: 2681
    • 9a Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
    • 9b Xie J.-H, Zhu S.-F, Zhou Q.-L. Chem. Rev. 2011; 111: 1713
    • 9c Busacca CA, Fandrick DR, Song JJ, Senanayake CH. Adv. Synth. Catal. 2011; 353: 1825
    • 9d Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 9e Verendel JJ, Pàmies O, Diéguez M, Andersson PG. Chem. Rev. 2014; 114: 2130
    • 9f Zhang Z, Butt NA, Zhang W. Chem. Rev. 2016; 116: 14769
    • 9g Hayler JD, Leahy DK, Simmons EM. Organometallics 2019; 38: 36
    • 10a Nugent TC, El-Shazly M. Adv. Synth. Catal. 2010; 352: 753
    • 10b Wakchaure VN, Zhou J, Hoffmann S, List B. Angew. Chem. Int. Ed. 2010; 49: 4612
    • 10c Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ. Science 2010; 329: 305
    • 10d Wang C, Pettman A, Bacsa J, Xiao J. Angew. Chem. Int. Ed. 2010; 49: 7548
    • 10e Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl M.-M, Radnik J, Beller M. Science 2017; 358: 326
    • 10f Gallardo-Donaire J, Hermsen M, Wysocki J, Ernst M, Rominger F, Trapp O, Hashmi AS. K, Schäfer A, Comba P, Schaub T. J. Am. Chem. Soc. 2018; 140: 355
    • 10g Mayol O, Bastard K, Beloti L, Frese A, Turkenburg JP, Petit J.-L, Mariage A, Debard A, Pellouin V, Perret A, Berardinis V, Zaparucha A, Groqan G, Vergne-Vaxelaire C. Nat. Catal. 2019; 2: 324
    • 11a Luo N, Liao J, Ouyang L, Wen H, Zhong Y, Liu J, Tang W, Luo R. Organometallics 2020; 39: 165
    • 11b Luo N, Liao J, Ouyang L, Wen H, Liu J.-T, Tang W, Luo R. Organometallics 2019; 38: 3025
    • 11c Lou R, Cheng G, Wei Y, Deng R, Huang M, Liao J. Organometallics 2018; 37: 1652
    • 11d Luo N, Zhong Y, Liu J-T, Ouyang L, Luo R. Synthesis 2020; 52: 3439
    • 11e Ouyang L, Xia Y, Liao J, Luo R. Eur. J. Org. Chem. 2020; 6387
  • 12 Chen Y, Pan Y, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2019; 58: 16831
  • 13 Yuan S, Gao G, Wang L, Liu C, Wan L, Huang H, Geng H, Chang M. Nat. Commun. 2020; 11: 621
  • 14 Lei Q, Wei Y, Talwar D, Wang C, Xue D, Xiao J. Chem. Eur. J. 2013; 19: 4021
    • 15a Mellmann D, Sponholz P, Junge H, Beller M. Chem. Soc. Rev. 2016; 45: 3954
    • 15b Li J, Li J, Zhang D, Liu C. ACS Catal. 2016; 6: 4746
    • 16a Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
    • 16b Hoffmann S, Nicoletti M, List B. J. Am. Chem. Soc. 2006; 128: 13074
    • 16c Aberg JB, Samec JS. M, Backvall JE. Chem. Commun. 2006; 2771
    • 16d Li C, Wang C, Villa-Marcos B, Xiao J. J. Am. Chem. Soc. 2008; 130: 14450
    • 16e Zhou H, Li Z, Wang Z, Wang T, Xu L, He Y, Fan QH, Pan J, Gu L, Chan AS. C. Angew. Chem. Int. Ed. 2008; 47: 8464
    • 17a Wu X, Liu J, Tommaso DD, Iggo JA, Catlow CR. A, Bacsa J, Xiao JA. Chem. Eur. J. 2008; 14: 7699
    • 17b Pavlova A, Meijer EJ. ChemPhysChem 2012; 13: 3492
    • 18a Liu J.-T, Yang S, Tang W, Yang Z, Xu J. Green Chem. 2018; 20: 2118
    • 18b Li J, Tang W, Ren D, Xu J, Yang Z. Green Chem. 2019; 21: 2088
    • 19a Brieger G, Nestrick TJ. Chem. Rev. 1974; 74: 567
    • 19b Johnstone RA. W, Wilby AH, Entwistle ID. Chem. Rev. 1985; 85: 129
    • 19c Zassinovich G, Mestroni G, Gladiali S. Chem. Rev. 1992; 92: 1051
    • 20a Wang C, Xiao J. Chem. Commun. 2017; 53: 3399
    • 20b Wang C, Chen H.-YT, Basca J, Catlow CR. A, Xiao J. Dalton Trans. 2013; 42: 935
    • 20c Koike T, Ikariya T. Adv. Synth. Catal. 2004; 346: 37
    • 20d Dobereiner GE, Nova A, Schley ND, Hazari N, Miller S, Eisenstein JO, Crabtree RH. J. Am. Chem. Soc. 2011; 133: 7547
    • 20e Wang S, Huang H, Bruneau C, Fischmeister C. ChemSusChem 2019; 12: 2350
    • 21a Abdukader A, Jin H, Cheng Y, Zhu C. Tetrahedron Lett. 2014; 55: 4172
    • 21b Liu Y.-Y, Liang D, Lu L.-Q, Xaio W.-J. Chem. Commun. 2019; 55: 4853
    • 21c Saitoa K, Akiyama T. Chem. Commun. 2012; 48: 4573
    • 21d Haak E, Bytschkov I, Doye S. Angew. Chem. Int. Ed. 1999; 38: 3389
    • 21e Murugan S, Siba PM, Palmurukan MR, Ekambaram B. Org. Lett. 2019; 21: 8899
    • 21f Kouznetsov V, Urbina GJ. M, Stashenko E. Acta Hort. 1999; 501: 133