Synthesis 2021; 53(09): 1636-1644
DOI: 10.1055/a-1343-5642
paper

C2-gem-Aryldifluoromethylation of Quinoline N-Oxides with Potassium 2,2-Difluoro-2-arylacetates under Transition-Metal-Free Conditions

Yanhui Gao
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Laiqiang Li
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Jie Liu
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
,
Lei Wang
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
b   Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. of China
,
Min Wang
a   Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (21901081), the Natural Science Foundation of Anhui Province (2008085QB90), and the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province, China (gxyq2019167) for financial support.


Abstract

A simple protocol for C2-gem-aryldifluoromethylation of quinoline N-oxides with potassium 2,2-difluoro-2-arylacetates has been developed, affording C2-gem-aryldifluoromethylated quinoline N-oxides bearing different functional groups in moderate to good yields. Moreover, experimental studies reveal that this reaction is likely to proceed through a radical pathway.

Supporting Information



Publication History

Received: 13 December 2020

Accepted after revision: 28 December 2020

Accepted Manuscript online:
28 December 2020

Article published online:
25 January 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Champagne PA, Desroches J, Hamel J.-D, Vandamme M, Paquin J.-F. Chem. Rev. 2015; 115: 9073
    • 1b Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste FD. Chem. Rev. 2018; 118: 3887
    • 1c Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
    • 1d Yerien DE, Barata-Vallejo S, Postigo A. Chem. Eur. J. 2017; 23: 14676
    • 1e Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 2 Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley; Chichester: 2009
  • 3 Zhan Z, Peng X, Liu Q, Chen F, Ji Y, Yao S, Xi Y, Lin Y, Chen T, Xu Y, Ai J, Geng M, Duan W. Eur. J. Med. Chem. 2016; 116: 239
  • 4 Lynch CL, Willoughby CA, Hale JJ, Holson EJ, Budhu RJ, Gentry AL, Rosauer KG, Caldwell CG, Chen P, Mills SG, MacCoss M, Berk S, Chen L, Chapman KT, Malkowitz L, Springer MS, Gould SL, DeMartino JA, Siciliano SJ, Cascieri MA, Carella A, Carver G, Holmes K, Schleif WA, Danzeisen R, Hazuda D, Kessler J, Lineberger J, Miller M, Emini EA. Bioorg. Med. Chem. Lett. 2003; 13: 119
    • 5a Blackburn GM, England DA, Kolkmann F. J. Chem. Soc., Chem. Commun. 1981; 930
    • 5b Fujikawa K, Fujioka Y, Kobayashi A, Amii H. Org. Lett. 2011; 13: 5560
    • 5c Blackburn GM, Kent DE, Kolkmann F. J. Chem. Soc., Perkin Trans. 1 1984; 1119
    • 5d Mizuta S, Stenhagen IS. R, O’Duill M, Wolstenhulme J, Kirjavainen AK, Forsback SJ, Tredwell M, Sandford G, Moore PR, Huiban M, Luthra SK, Passchier J, Solin O, Gouverneur V. Org. Lett. 2013; 15: 2648
    • 5e Zhao H, Ma G, Xie X, Wang Y, Hao J, Wan W. Chem. Commun. 2019; 55: 2019
    • 5f Zhou Y, Xiong Z, Qiu J, Kong L, Zhu G. Org. Chem. Front. 2019; 6: 1022
    • 6a He Z, Zhang R, Hu M, Li L, Ni C, Hu J. Chem. Sci. 2013; 4: 3478
    • 6b Ambler BR, Altman RA. Org. Lett. 2013; 15: 5578
    • 6c Wan W, Ma G, Li J, Chen Y, Hu Q, Li M, Jiang H, Deng H, Hao J. Chem. Commun. 2016; 52: 1598
    • 6d Li X, Li S, Sun S, Yang F, Zhu W, Zhu Y, Wu Y, Wu Y. Adv. Synth. Catal. 2016; 358: 1699
    • 6e Hong G, Yuan J, Fu J, Pan G, Wang Z, Yang L, Xiao Y, Mao P, Zhang X. Org. Chem. Front. 2019; 6: 1173
    • 6f Yang B, Xu XH, Qing FL. Org. Lett. 2016; 18: 5956
    • 6g Chen F, Hashmi AS. K. Org. Lett. 2016; 18: 2880
    • 6h Gao Y, Zhao L, Xiang T, Li P, Wang L. RSC Adv. 2020; 10: 10559
    • 6i Chen Z, Bai X, Sun J, Xu Y. J. Org. Chem. 2020; 85: 7674
    • 7a Vshyvenko S, Reisenauer MR, Rogelj S, Hudlicky T. Bioorg. Med. Chem. Lett. 2014; 24: 4236
    • 7b Banáth JP, Olive PL. Cancer Res. 2003; 63: 4347
    • 7c Kanou M, Saeki K, Kato T, Takahashi K, Mizutani T. Fund. Clin. Pharmacol. 2002; 16: 513
    • 8a Werbel LM, Kersten SJ, Tumer WR. Eur. J. Med. Chem. 1993; 28: 837
    • 8b Andreev VP, Korvacheva EG, Nizhnik YP. Pharm. Chem. J. 2006; 40: 347
  • 9 Xie L.-Y, Qu J, Peng S, Liu K.-J, Wang Z, Ding M.-H, Wang Y, Cao Z, He W.-M. Green Chem. 2018; 20: 760
    • 10a Kumar R, Kumar I, Sharmaab R, Sharma U. Org. Biomol. Chem. 2016; 14: 2613
    • 10b Bryson TA, Gibson JM, Stewart JJ, Voegtle H, Tiwari A, Dawson JH, Marley W, Harmon B. Green Chem. 2003; 5: 177
    • 10c Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463
    • 10d Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 10e Wasa M, Worrell BT, Yu J.-Q. Angew. Chem. Int. Ed. 2010; 49: 1275
    • 11a Yu S, Sang HL, Ge S. Angew. Chem. Int. Ed. 2017; 56: 15896
    • 11b Franco MS. F, de Paula MH, Glowacka PC, Fumagalli F, Clososki GC, da Silva Emery F. Tetrahedron Lett. 2018; 59: 2562
    • 11c Hwang H, Kim J, Jeong J, Chang S. J. Am. Chem. Soc. 2014; 136: 10770
  • 12 Keisey FE, Geiling EM. K, Oldham FK, Dearborn E. J. Pharmacol. Exp. Ther. 1944; 80: 391
    • 13a Sun W, Wang M, Zhang Y, Wang L. Org. Lett. 2015; 17: 426
    • 13b Shen Y, Chen J, Liu M, Ding J, Gao W, Huang X, Wu H. Chem. Commun. 2014; 50: 4292
    • 14a Zhang Z, Pi C, Tong H, Cui X, Wu Y. Org. Lett. 2017; 19: 440
    • 14b Xia H, Liu Y, Zhao P, Gou S, Wang J. Org. Lett. 2016; 18: 1796
  • 15 Chen X, Yang F, Cui X, Wu Y. Adv. Synth. Catal. 2017; 359: 3922
    • 16a Zhu C, Yi M, Wei D, Chen X, Wu Y, Cui X. Org. Lett. 2014; 16: 1840
    • 16b Bi W.-Z, Sun K, Qu C, Chen X.-L, Qu L.-B, Zhu S.-H, Li X, Wu H.-T, Duan L.-K, Zhao Y.-F. Org. Chem. Front. 2017; 4: 1595
    • 16c Wang Z, Han M.-Y, Li P, Wang L. Eur. J. Org. Chem. 2018; 5954
    • 16d Han S, Gao X, Wu Q, Li J, Zou D, Wu Y, Wu Y. Org. Chem. Front. 2019; 6: 830
    • 17a Wu Z, Song H, Cui X, Pi C, Du W, Wu Y. Org. Lett. 2013; 15: 1270
    • 17b Sun K, Chen X.-L, Li X, Qu L.-B, Bi W.-Z, Chen X, Ma H.-L, Zhang S.-T, Han B.-W, Zhao Y.-F, Li C.-J. Chem. Commun. 2015; 51: 12111
    • 17c Du B, Qian P, Wang Y, Mei H, Han J, Pan Y. Org. Lett. 2016; 18: 4144
    • 17d Fu W.-K, Sun K, Qu C, Chen X.-L, Qu L.-B, Bi W.-Z, Zhao Y.-F. Asian J. Org. Chem. 2017; 6: 492
    • 17e Xie L.-Y, Li Y.-J, Qu J, Duan Y, Hu J, Liu K.-J, Cao Z, He W.-M. Green Chem. 2017; 19: 5642
    • 17f Xie L.-Y, Fang T.-G, Tan J.-X, Zhang B, Cao Z, Yang L.-H, He W.-M. Green Chem. 2019; 21: 3858
    • 17g Xie L.-Y, Peng S, Liu F, Chen G.-R, Xia W, Yu X, Li W.-F, Cao Z, He W.-M. Org. Chem. Front. 2018; 5: 2604
    • 18a Yu S, Sang HL, Ge S. Angew. Chem. Int. Ed. 2017; 56: 15896
    • 18b Han S, Chakrasali P, Park J, Oh H, Kim S, Kim K, Pandey AK, Han SH, Han SB, Kim IS. Angew. Chem. Int. Ed. 2018; 57: 12737
    • 18c Jo W, Kim J, Choi S, Cho SH. Angew. Chem. Int. Ed. 2016; 55: 9690
    • 18d Zhou W, Miura T, Murakami M. Angew. Chem. Int. Ed. 2018; 57: 5139
  • 19 Zhang D, Qiao K, Hua J, Liu Z, Qi H, Yang Z, Zhu N, Fang Z, Guo K. Org. Chem. Front. 2018; 5: 2340
    • 20a Zhang Q, Wei D, Cui X, Zhang D, Wang H, Wu Y. Tetrahedron 2015; 71: 6087
    • 20b Wang H, Cui X, Pei Y, Zhang Q, Bai J, Wei D, Wu Y. Chem. Commun. 2014; 50: 14409
    • 21a Xie X, Zhang Y, Hao J, Wan W. Org. Biomol. Chem. 2020; 18: 400
    • 21b Sathyamoorthi S, Banerjee DS. ChemistrySelect 2017; 2: 10678
  • 22 CCDC 1961422 (3ga) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.