Synthesis 2021; 53(05): 961-970
DOI: 10.1055/a-1339-3227
paper

Late-Stage Transformation of Carboxylic Acids to N-Trifluoroethyl­imides with Trifluoromethyl Diazomethane

Xiao-Feng Qiu
a  National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. of China
b  Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
,
De-Yong Liu
a  National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. of China
,
Wen-Feng Zhang
a  National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. of China
,
a  National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. of China
b  Key Laboratory of Small Functional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
› Author Affiliations
We thank the Outstanding Young Talents Funding of Jiangxi Province (20171BCB23039) for funding this research.


Abstract

We report the first systematic evaluation of the reaction of trifluoromethyl diazomethane (2,2,2-trifluorodiazoethane, CF3CHN2) with drug-like molecules. We found our previous copper-catalyzed transformation of carboxylic acids to the corresponding N-trifluoro­ethylimides with CF3CHN2 and acetonitrile is well-suited for the late-stage modification of drug and drug-like acids. A procedure that enables the use of solid nitriles and nitriles with high boiling points as viable substrates is also disclosed.

Supporting Information



Publication History

Received: 15 October 2020

Accepted after revision: 17 December 2020

Publication Date:
17 December 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 2a Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3216
    • 2b Sladojevich F, Arlow SI, Tang P, Ritter T. J. Am. Chem. Soc. 2013; 135: 2470
    • 2c Tang P, Furuya T, Ritter T. J. Am. Chem. Soc. 2010; 132: 12150
  • 3 Xiao H, Liu Z, Shen H, Zhang B, Zhu L, Li C. Chem 2019; 5: 940
    • 4a Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 4b O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
  • 5 Lopchuk JM. Imide Natural Products . In Developments in Organic Chemistry - Imides, Chap. 7 . Luzzio FA. Elsevier; Amsterdam: 2019: 255-334
    • 6a Mertens L, Koenigs RM. Org. Biomol. Chem. 2016; 14: 10547
    • 6b Mykhailiuk PK. Chem. Rev. 2020; 120: 12718
    • 7a Molander GA, Cavalcanti LN. Org. Lett. 2013; 15: 3166
    • 7b Slobodyanyuk EY, Artamonov OS, Shishkin OV, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487
    • 7c Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 938
    • 7d Morandi B, Cheang J, Carreira EM. Org. Lett. 2011; 13: 3080
    • 7e Morandi B, Mariampillai B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 1101
    • 7f Zhu CL, Yang LJ, Li S, Zheng Y, Ma JA. Org. Lett. 2015; 17: 3442
    • 7g Chen Z, Zheng Y, Ma JA. Angew. Chem. Int. Ed. 2017; 56: 4569
    • 7h Le Maux P, Juillard S, Simonneaux G. Synthesis 2006; 1701
    • 7i Hock KJ, Mertens L, Metze FK, Schmittmann C, Koenigs RM. Green Chem. 2017; 19: 905
    • 8a Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 4294
    • 8b Liu CB, Meng W, Li F, Wang S, Nie J, Ma JA. Angew. Chem. Int. Ed. 2012; 51: 6227
    • 8c Britton J, Jamison TF. Angew. Chem. Int. Ed. 2017; 56: 8823
  • 9 Zhang FG, Wei Y, Yi YP, Nie J, Ma JA. Org. Lett. 2014; 16: 3122
  • 10 Luo HQ, Wu GJ, Zhang Y, Wang JB. Angew. Chem. Int. Ed. 2015; 54: 14503
    • 11a Pieber B, Kappe CO. Org. Lett. 2016; 18: 1076
    • 11b Morandi B, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 9085
  • 12 Meese CO. Synthesis 1984; 1041
    • 13a Argintaru OA, Ryu D, Aron I, Molander GA. Angew. Chem. Int. Ed. 2013; 52: 13656
    • 13b Molander GA, Ryu D. Angew. Chem. Int. Ed. 2014; 53: 14181
  • 14 Hyde S, Veliks J, Liegault B, Grassi D, Taillefer M, Gouverneur V. Angew. Chem. Int. Ed. 2016; 55: 3785
  • 15 Arkhipov AV, Arkhipov VV, Cossy J, Kovtunenko VO, Mykhailiuk PK. Org. Lett. 2016; 18: 3406
  • 16 Guo R, Zheng Y, Ma JA. Org. Lett. 2016; 18: 4170
  • 17 Peng SQ, Zhang XW, Zhang L, Hu XG. Org. Lett. 2017; 19: 5689
  • 18 Mykhailiuk PK, Kishko I, Kubyshkin V, Budisa N, Cossy J. Chem. Eur. J. 2017; 23: 13279
    • 19a Koley D, Colon OC, Savinov SN. Org. Lett. 2009; 11: 4172
    • 19b Li Y.-X, Li L.-H, Yang Y.-F, Hua H.-L, Yan X.-B, Zhao L.-B, Zhang J.-B, Ji F.-J, Liang Y.-M. Chem. Commun. 2014; 50: 9936
  • 20 Mykhailiuk PK. Angew. Chem. Int. Ed. 2015; 54: 6558
  • 21 More comments on the in situ generated CF3CHN2 (Method A/A′): Although the yields with 20 equiv of valeronitrile in Table 1, entries 5 and 6 are higher than those with a solvent quantity of valeronitrile, we found that other nitriles still need solvent quantities to get high yields. For example, when using 20 equiv of nitrile, low yields were obtained for the synthesis of 3d and 3m, with the NMR yield being 29% and 13%, respectively.
  • 22 Mumm O. Ber. Dtsch. Chem. Ges. 1910; 43: 886
  • 23 CF3CF2CHN2, as a close analogue of CF3CHN2, may be applicable using the current method: Mykhailiuk PK. Chem. Eur. J. 2014; 20: 4942