Synlett 2021; 32(15): 1551-1554 DOI: 10.1055/a-1336-8034
cluster
Modern Nickel-Catalyzed Reactions
Nickel-Catalyzed Carboxylation of Conjugated Dienes with Carbon Dioxide and DIBAL-H for the Synthesis of β,γ-Unsaturated Carboxylic Acids
Ying Luo
,
Bun Chan
,
Tsutomu Fukuda
,
Gen Onodera
,
Masanari Kimura∗
This work was supported by a Grant-in-Aid for Scientific Research (B) (JP18H01981) from JSPS and partly by a Grant-in-Aid for Scientific Research on Innovative Areas, ‘Precise Formation of a Catalyst Having a Specified Field for Use in Extremely Difficult Substrate Conversion Reactions’ (18H04266) from MEXT. This work was also carried out as part of the research program on Artificial Photosynthesis at Osaka City University.
Abstract
Conjugated dienes underwent Ni-catalyst-promoted 1,2-hydrocarboxylation in a 1:1 ratio with carbon dioxide under atmospheric pressure in the presence of diisobutylaluminum hydride (DIBAL-H) to give the corresponding β,γ-unsaturated carboxylic acids, without dimerization or oligomerization of the conjugated diene.
Key words
nickel catalysis -
carbon dioxide -
dienes -
hydrocarboxylation -
diisobutylaluminum hydride -
alkenoic acids
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1336-8034.
Supporting Information
Publication History
Received: 15 November 2020
Accepted after revision: 14 December 2020
Accepted Manuscript online: 14 December 2020
Article published online: 12 January 2021
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Aresta M,
Dibenedetto A.
Dalton Trans. 2007; 2975
1b
Zhang L,
Hou Z.
Chem. Sci. 2013; 4: 3395
1c
Green Carbon Dioxide: Advances in CO2 Utilization
.
Centi G,
Perathoner S.
Wiley; Hoboken: 2014
1d
Liu Q,
Wu L,
Jackstell R,
Beller M.
Nat. Commun. 2015; 6: 5933
For recent catalytic coupling reactions of carbon dioxide with unsaturated hydrocarbon compounds, see:
2a
Ostapowicz TG,
Schmitz M,
Krystof M,
Klankermayer J,
Leitner W.
Angew. Chem. Int. Ed. 2013; 52: 12119
2b
Zhang L,
Hou Z.
New and Future Developments in Catalysis: Activation of Carbon Dioxide
.
Suib SL.
Elsevier; Amsterdam: 2013. Chap. 9, 253
2c
Wu L,
Liu Q,
Fleischer I,
Jackstell R,
Beller M.
Nat. Commun. 2014; 5: 3091
2d
Gaydou M,
Moragas T,
Juliá-Hernández F,
Martin R.
J. Am. Chem. Soc. 2017; 139: 12161
2e
Zhang L,
Hou Z.
Curr. Opin. Green Sustainable Chem. 2017; 3: 17
2f
Kuge K,
Luo Y,
Fujita Y,
Mori Y,
Onodera G,
Kimura M.
Org. Lett. 2017; 19: 854
2g
Ye J.-H,
Miao M,
Huang H,
Yan S.-S,
Yin Z.-B,
Zhou W.-J,
Yu D.-G.
Angew. Chem. Int. Ed. 2017; 56: 15416
2h
Yan S.-S,
Fu Q,
Liao L.-L,
Sun G.-Q,
Ye J.-H,
Gong L,
Bo-Xue Y.-Z,
Yu D.-G.
Coord. Chem. Rev. 2018; 374: 439
3a
Sato Y,
Takimoto M,
Hayashi K,
Katsuhara T,
Takagi K,
Mori M.
J. Am. Chem. Soc. 1994; 116: 9771
3b
Takimoto M,
Hiraga Y,
Sato Y,
Mori M.
Tetrahedron Lett. 1998; 39: 4543
3c
Löber O,
Kawatsura M,
Hartwig JF.
J. Am. Chem. Soc. 2001; 123: 4366
3d
Shibata K,
Kimura M,
Kojima K,
Tanaka S,
Tamaru Y.
J. Organomet. Chem. 2001; 624: 348
3e
Kimura M,
Ezoe A,
Tanaka S,
Tamaru Y.
Angew. Chem. Int. Ed. 2001; 40: 3600
3f
Sato Y,
Saito N,
Mori M.
J. Org. Chem. 2002; 67: 9310
3g
Ezoe A,
Kimura M,
Inoue T,
Mori M,
Tamaru Y.
Angew. Chem. Int. Ed. 2002; 41: 2784
3h
Parker SE,
Börgel J,
Ritter T.
J. Am. Chem. Soc. 2014; 136: 4857
3i
Maza RJ,
Davenport E,
Miralles N,
Carbó JJ,
Fernández E.
Org. Lett. 2019; 21: 2251
4a
Gui Y.-Y,
Hu N.-F,
Chen X.-W,
Liao L.-L,
Ju T,
Ye J.-H,
Zhang Z,
Li J,
Yu D.-G.
J. Am. Chem. Soc. 2017; 139: 17011
4b
Mori Y,
Shigeno C,
Luo Y,
Chan B,
Onodera G,
Kimura M.
Synlett 2018; 29: 742
5a
Tenaglia A,
Brun P,
Waegell B.
J. Organomet. Chem. 1985; 285: 343
5b
Hoberg H,
Gross S,
Milchereit A.
Angew. Chem. Int. Ed. 1987; 26: 571
6a
Jolly PW,
Wilke G.
The Organic Chemistry of Nickel
. Academic Press; New York: 1974
6b
Keim W.
Angew. Chem. Int. Ed. 1990; 29: 235
6c
Lautens M,
Klute W,
Tam W.
Chem. Rev. 1996; 96: 49
6d
Kimura M,
Tamaru Y.
Modern Organonickel Chemistry
.
Tamaru Y.
Wiley-VCH; Weinheim: 2005. Chap. 5, 137
7a
Kimura M,
Matsuo S,
Shibata K,
Tamaru Y.
Angew. Chem. Int. Ed. 1999; 38: 3386
7b
Kimura M,
Kojima K,
Inoue T,
Tamaru Y.
Synthesis 2004; 3089
7c
Takimoto M,
Kajima Y,
Sato Y,
Mori M.
J. Org. Chem. 2005; 70: 8605
7d
Kimura M,
Ezoe A,
Mori M,
Tamaru Y.
J. Am. Chem. Soc. 2005; 127: 201
7e
Kojima K,
Kimura M,
Tamaru Y.
Chem. Commun. 2005; 4717
7f
Kimura M,
Ezoe A,
Mori M,
Iwata K,
Tamaru Y.
J. Am. Chem. Soc. 2006; 128: 8559
8a
Takimoto M,
Mori M.
J. Am. Chem. Soc. 2002; 124: 10008
8b
Mori Y,
Mori T,
Onodera G,
Kimura M.
Synthesis 2014; 46: 2287
9a
Hoberg H,
Jenni K.
J. Organomet. Chem. 1987; 322: 193
9b
Gao Y,
Iijima S,
Urabe H,
Sato F.
Inorg. Chim. Acta 1994; 222: 145
10
Takimoto M,
Mori M.
J. Am. Chem. Soc. 2001; 123: 2895
11
Takaya J,
Sasano K,
Iwasawa N.
Org. Lett. 2011; 13: 1698
12
Tortajada A,
Ninokata R,
Martin R.
J. Am. Chem. Soc. 2018; 140: 2050
13
2,7-Dimethyl-3-methyleneoct-6-enoic Acid (2a) and 2,6-Dimethyl-2-vinylhept-5-enoic acid (3a): Typical Procedure (Table [1 ], Entry 1)
An oven-dried flask charged with Ni(cod)2 (13.7 mg, 0.05 mmol) was subjected to three cycles of evacuation and filling with CO2 . Anhyd hexane (2 mL), myrcene (540 mg, 4.0 mmol), and a 19% solution of DIBAL-H in hexane (1 mL, 1 mmol) were added under a constant flow of CO2 . The mixture was stirred at rt for 24 h, then 2 M aq NaOH was added and the mixture was diluted with H2 O and extracted with EtOAc (×3). The aqueous phases were then neutralized with 2 M aq HCl and extracted with EtOAc (×3). The combined organic phases were washed with brine, dried (MgSO4 ), filtered, and concentrated under reduced pressure. The residual oil was placed in a Kugelrohr (30 Torr, 90 °C) to remove the isovaleric acid byproduct. A 5:1 mixture of 2a and 3a was obtained in the last bulb as a yellow liquid; yield: 0.13 g (70%).
2a
1 H NMR (400 MHz, benzene-d
6 ): δ = 5.09–5.15 (m, 1 H). 4.99 (s, 1 H), 4.88 (s, 1 H), 3.01 (q, J = 7.0 Hz, 1 H), 2.12 (m, 4 H), 1.03 (s, 3 H), 1.51 (s, 3 H), 1.15 (d, J = 6.8 Hz, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 181.14, 147.45, 131.94, 123.67, 111.46, 45.57, 34.64, 26.30, 25.64, 17.66, 16.05.
3a
IR (neat): 3100, 2860, 2638, 1711, 1645, 1454, 1414, 1286, 1231, 1092, 901, 833 cm–1 . 1 H NMR (400 MHz, benzene-d
6 ): δ = 6.04 (dd, J = 17.6, 10.8 Hz, 1 H), 5.09–5.15 (m, 1 H), 5.02 (d, J = 17.6 Hz, 1 H), 4.98 (d, J = 10.8 Hz, 1 H), 2.00 (q, J = 8.2 Hz, 2 H), 1.76–1.83 (m, 1 H), 1.60–1.67 (m, 1 H), 1.63 (s, 3 H), 1.51 (s, 3 H), 1.23 (s, 3 H). 13 C (100 MHz, CDCl3 ): δ = 182.64, 140.94, 132.09, 123.62, 114.09, 48.33, 38.95, 25.60, 23.26, 20.16, 17.55. MS (EI): m/z (%) = 182.1310 (28) [M+ ], 167 (4), 137.
14 For the effects of solvents, see the Supporting Information.
15
Shen Z.-L,
Peng Z,
Yang C.-M,
Helberg J,
Mayer P,
Marek I,
Knochel P.
Org. Lett. 2014; 16: 956
16a
Ely RJ,
Morken JP.
J. Am. Chem. Soc. 2010; 132: 2534
16b
Gao F,
Hoveyda AH.
J. Am. Chem. Soc. 2010; 132: 10961
16c
Eisch JJ,
Sexsmith SR,
Fichter KC.
J. Organomet. Chem. 1997; 527: 301
16d
Eisch JJ,
Ma X,
Singh M,
Wilke G.
J. Organomet. Chem. 1990; 382: 273
17a
Duong HA,
Huleatt PB,
Tan Q.-W,
Shuying EL.
Org. Lett. 2013; 15: 4034
17b
Wu J,
Hazari N.
Chem. Commun. 2011; 47: 1069
17c
Johnson MT,
Johansson R,
Kondrashov MV,
Steyl G,
Ahlquist MS. G,
Roodt A,
Wendt OF.
Organometallics 2010; 29: 3521
17d
Takaya J,
Iwasawa N.
J. Am. Chem. Soc. 2008; 130: 15254