Synthesis 2021; 53(09): 1654-1662
DOI: 10.1055/a-1336-5720
paper

Oxidative C–H Acyloxylation of Acetone with Carboxylic Acids under Iodine Catalysis

Xiao-Yu Zhou
,
Xia Chen
The work was supported by the Foundation of Guizhou Educational Committee (Grant No. qianjiaohe KY zi [2019] 081) and the Natural Science Foundation of Guizhou Province (Grant No. qiankehejichu [2018] number 1141)


Abstract

Iodine-catalyzed oxidative C(sp3)–H acyloxylation of acetone with carboxylic acids has been developed. The method employs iodide­ as catalyst and sodium chlorite as oxidant. Substituted benzoic acids, naphthoic acids and heteroaromatic carboxylic acids can be used, and 2-oxopropyl carboxylates are obtained with good to excellent yields.

Supporting Information



Publication History

Received: 04 November 2020

Accepted after revision: 14 December 2020

Accepted Manuscript online:
14 December 2020

Article published online:
12 January 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
    • 1b Heinen F, Engelage E, Dreger A, Weiss R, Huber SM. Angew. Chem. Int. Ed. 2018; 57: 3830
    • 1c Heinen F, Engelage E, Cramer CJ, Huber SM. J. Am. Chem. Soc. 2020; 142: 8633
    • 2a Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 2b Dohi T, Ito M, Morimoto K, Iwata M, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 1301
    • 2c Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 2d Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 2e Muñiz K. Acc. Chem. Res. 2018; 51: 1507
    • 2f Duhamel T, Stein CJ, Martínez C, Reiher M, Muñiz K. ACS Catal. 2018; 8: 3918
    • 2g Xing B, Ni C, Hu J. Angew. Chem. Int. Ed. 2018; 57: 9896
  • 3 Fischer D, Tomeba H, Pahadi NK, Patil NT, Huo Z, Yamamoto Y. J. Am. Chem. Soc. 2008; 130: 15720
    • 4a Crone B, Kirsch SF, Umland K.-D. Angew. Chem. Int. Ed. 2010; 49: 4661
    • 4b Liu B, Cheng J, Li Y, Li J.-H. Chem. Commun. 2019; 55: 667
  • 5 He Z, Li H, Li Z. J. Org. Chem. 2010; 75: 4636
  • 6 Zhang J, Wu X, Gao Q, Geng X, Zhao P, Wu Y.-D, Wu A. Org. Lett. 2017; 19: 408
  • 7 Gao Q, Yan H, Wu M, Sun J, Yan X, Wu A. Org. Biomol. Chem. 2018; 16: 2342
  • 8 Cai Q, Zhuang S, Yang M, Peng N, Liu Y, Wu A. Tetrahedron 2019; 75: 130756
  • 9 Takeda M, Maejima S, Yamaguchi E, Itoh A. Tetrahedron Lett. 2019; 60: 151284
  • 10 Yin G, Fan L, Ren T, Zheng C, Tao Q, Wu A, She N. Org. Biomol. Chem. 2012; 10: 8877
  • 11 Rao HS. P, Satish V, Kanniyappan S, Kumari P. Tetrahedron 2018; 74: 6047
  • 12 Mani GS, Rao AV. S, Tangella Y, Sunkari S, Sultana F, Namballa HK, Shankaraiah N, Kamal A. New J. Chem. 2018; 42: 15820
    • 13a Marsili LA, Pergomet JL, Gandon V, Riveira MJ. Org. Lett. 2018; 20: 7298
    • 13b Koenig JJ, Arndt T, Gildemeister N, Neudorfl J.-M, Breugst M. J. Org. Chem. 2019; 84: 7587
  • 14 Siddaraju Y, Prabhu KR. ACS Omega 2018; 3: 4908
  • 15 Liu L, Sun Q, Yan Z, Liang X, Zha Z, Yang Y, Wang Z. Green Chem. 2018; 20: 3927
  • 16 Chauhan J, Luthra T, Sen S. Eur. J. Org. Chem. 2018; 4776
  • 17 Tran UP. N, Oss G, Breugst M, Detmar E, Pace DP, Liyanto K, Nguyen TV. ACS Catal. 2019; 9: 912
    • 18a Liu Y, Yuan X, Guo X, Zhang X, Chen B. Tetrahedron 2018; 74: 6057
    • 18b Singh M, Awasthi P, Singh V. Eur. J. Org. Chem. 2020; 1023
  • 19 Zheng Y.-Y, Feng K.-X, Xia A.-B, Liu J, Tang C.-K, Zhou Z.-Y, Xu D.-Q. RSC Adv. 2019; 9: 9770
  • 20 Chen W, Zhu X, Wang F, Yang Y, Deng G, Liang Y. J. Org. Chem. 2020; 85: 3349
    • 21a Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 21b Pandey AK, Chand S, Singh R, Kumar S, Singh KN. ACS Omega 2020; 5: 7627
  • 22 Tanimoto K, Ohkado R, Iida H. J. Org. Chem. 2019; 84: 14980
  • 23 Dey A, Hajra A. J. Org. Chem. 2019; 84: 14904
  • 24 Bhattacharjee P, Bora U. ACS Omega 2019; 4: 11770
  • 25 Sar S, Tripathi A, Dubey KD, Sen S. J. Org. Chem. 2020; 85: 3748
  • 26 Barak DS, Dighe SU, Avasthi I, Batra S. J. Org. Chem. 2018; 83: 3537
  • 27 Siddaraju Y, Prabhu KR. J. Org. Chem. 2018; 83: 11145
  • 28 Sar S, Chauhan J, Sen S. ACS Omega 2020; 5: 4213
  • 29 Ren J, Yan X, Cui X, Pi C, Wu Y, Cui X. Green Chem. 2020; 22: 265
  • 30 Leng J, Meng J, Luo X, Deng W.-P. Tetrahedron 2018; 74: 6993
    • 31a Gao Q, Wu X, Liu S, Wu A. Org. Lett. 2014; 16: 1732
    • 31b Wu X, Gao Q, Liu S, Wu A. Org. Lett. 2014; 16: 2888
    • 31c Liu S, Gao Q, Wu X, Zhang J, Ding K, Wu A. Org. Biomol. Chem. 2015; 13: 2239
    • 31d Zheng K, Zhuang S, Shu W, Wu Y, Yang C, Wu A. Chem. Commun. 2018; 54: 11897
    • 31e Bosnidou AE, Muniz K. Angew. Chem. Int. Ed. 2019; 58: 7485
    • 31f Debnath S, Das T, Gayen S, Ghosh T, Maiti DK. ACS Omega 2019; 4: 20410
  • 32 Liu S, Qi Z, Zhang Z, Qian B. Org. Lett. 2019; 21: 7722
    • 33a Xue Y, Yan Y, Jiang K, Chen W, Yang L. RSC Adv. 2020; 10: 14720
    • 33b Cao Y, Liu L, Huang T, Chen T. New J. Chem. 2020; 44: 8697
  • 34 Tuo X, Chen S, Jiang P, Ni P, Wang X, Deng G.-J. RSC Adv. 2020; 10: 8348
    • 35a Kuwano R. Synthesis 2009; 1049
    • 35b Adly FG. Catalysts 2017; 7: 347
    • 35c Ali MR, Kumar S, Shalmali N, Afzal O, Azim S, Chanana D, Alam O, Paudel YN, Sharma M, Bawa S. Mini-Rev. Med. Chem. 2019; 19: 410
    • 36a Štěpnička P, Demel J, Čejka J. J. Mol. Catal. A: Chem. 2004; 224: 161
    • 36b Kumar CS. C, Kwong HC, Mah SH, Chia TS, Loh W.-S, Quah CK, Lim GK, Chandraju S, Fun H.-K. Molecules 2015; 20: 18827
    • 36c Kulkarni MG, Shaikh YB, Borhade AS, Chavhan SW, Dhondge AP, Gaikwad DD, Desai MP, Birhade DR, Dhatrak NR. Tetrahedron Lett. 2013; 54: 2293
    • 37a Uyanik M, Suzuki D, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 5331
    • 37b Wu Y.-D, Huang B, Zhang Y.-X, Wang X.-X, Dai J.-J, Xu J, Xu H.-J. Org. Biomol. Chem. 2016; 14: 5936
    • 37c Kumar PS, Ravikumar B, Ashalu KC, Reddy KR. Tetrahedron Lett. 2018; 59: 33
    • 37d Wang X, Li G, Yang Y, Jiang J, Feng Z, Zhang P. Chin. Chem. Lett. 2020; 31: 711
  • 38 Ramazani A, Ahmadi Y, Karimi Z, Rezaei A. J. Heterocycl. Chem. 2012; 49: 1447