Synlett 2021; 32(06): 593-600
DOI: 10.1055/a-1335-7902
letter

Electrocatalytic Synthesis of gem-Bisarylthio Enamines and α-Phenylthio Ketones via a Radical Process under Mild Conditions

Yong-Zhou Pan
,
Shi-Yan Cheng
,
Qian-Yu Li
,
,
Ying-Ming Pan
,
Xiu-Jin Meng
,
Zu-Yu Mo
We thank the National Natural Science Foundation of China (22061003), the Natural Science Foundation of Guangxi Province (2019GXNSFAA245027), Bagui Scholars Program of Guangxi Zhuang Autonomous Region (2016A13), and the Special Fund for Distinguished Experts in Guangxi of China for financial support.


Abstract

The novel method for the synthesis of gem-bisarylthio enamines and α-phenylthio ketones was developed via the coupling of α-substituted vinyl azides with thiols in the presence of tetrabutylammonium iodide (TBAI) as a redox catalyst and electrolyte at room temperature. Electronic properties were crucial in the generated products. This protocol features metal- and oxidant-free materials, broad tolerance of substrates, and mild reaction conditions.

Supporting Information



Publication History

Received: 16 October 2020

Accepted after revision: 11 December 2020

Accepted Manuscript online:
11 December 2020

Article published online:
08 March 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhang X, Liu C, Deng Y, Cao S. Org. Biomol. Chem. 2020; 18: 7540
    • 1b Fujita T, Fuchibe K, Ichikawa J. Angew. Chem. Int. Ed. 2019; 58: 390
    • 1c Zhang X, Cao S. Tetrahedron Lett. 2017; 58: 375
    • 1d Chelucci G. Chem. Rev. 2012; 112: 1344
    • 1e Hu J, Han X, Yuan Y, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 13342
    • 1f Hu J, Zhao Y, Shi Z. Nat. Catal. 2018; 1: 860
    • 1g Yoo W.-J, Kondo J, Rodríguez-Santamaría JA, Nguyen TV. Q, Kobayashi S. Angew. Chem. Int. Ed. 2019; 58: 6772
    • 1h Guo Y.-Q, Wang R, Song H, Liu Y, Wang Q. Org. Lett. 2020; 22: 709
  • 2 Yao C, Wang S, Norton J, Hammond M. J. Am. Chem. Soc. 2020; 142: 4793
  • 3 Uetake Y, Isoda M, Niwa T, Hosoya T. Org. Lett. 2019; 21: 4933
  • 4 Gao Y, Wu Z.-Q, Engle KM. Org. Lett. 2020; 22: 5235
  • 5 Davis FA, Mancinelli PA. J. Org. Chem. 1980; 45: 2597
  • 6 Ni J, Mao X, Zhang A. Adv. Synth. Catal. 2019; 9: 2004
    • 7a Fu J, Zanoni G, Anderson EA, Bi X. Chem. Soc. Rev. 2017; 46: 7208
    • 7b Hayashi H, Kaga A, Chiba S. J. Org. Chem. 2017; 82: 11981
    • 7c Hu B, DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844
    • 7d Jung N, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 12169
    • 8a Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 8b Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
    • 8c Ning Y, Ji Q, Liao P, Anderson EA, Bi X. Angew. Chem. Int. Ed. 2017; 56: 13805
    • 8d Wang Y.-F, Lonca GH, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 1067
    • 8e Shu W, Lorente A, Gómez-Bengoa E, Nevado C. Nat. Commun. 2017; 8: 13832
    • 8f Ning Y, Zhao X.-F, Wu Y.-B, Bi X. Org. Lett. 2017; 19: 6240
    • 8g Wu S.-W, Liu F. Org. Lett. 2016; 18: 3642
    • 8h Sun X, Yu S. Chem. Commun. 2016; 52: 10898
    • 9a Chen W, Hu M, Wu J, Zou H, Yu Y. Org. Lett. 2010; 12: 3863
    • 9b Reddy NN. K, Rao SN, Ravi C, Adimurthy S. ACS Omega 2017; 2: 5235
    • 10a Gaydou M, Echavarren AM. Angew. Chem. Int. Ed. 2013; 52: 13468
    • 10b Zhang F.-L, Wang Y.-F, Lonca GH, Zhu X, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390
    • 10c Qin C, Su Y, Shen T, Shi X, Jiao N. Angew. Chem. Int. Ed. 2016; 55: 350
    • 10d Hassner A, Levy AB. J. Am. Chem. Soc. 1971; 93: 5469
    • 10e Dey R, Banerjee P. Org. Lett. 2017; 19: 304
    • 10f Wang Y.-F, Hu M, Hayashi H, Xing B, Chiba S. Org. Lett. 2016; 18: 99
    • 10g Zhang F.-L, Zhu X, Chiba S. Org. Lett. 2015; 17: 3138
    • 10h Lonca GH, Tejo C, Chan HL, Chiba S, Gagosz F. Chem. Commun. 2017; 53: 736
    • 10i Zhu X, Chiba S. Chem. Commun. 2016; 52: 2473
    • 11a Padwa A, Rasmussen JK, Tremper A. J. Am. Chem. Soc. 1976; 98: 2605
    • 11b Xu H.-D, Zhou H, Pan Y.-P, Ren X.-T, Wu H, Han M, Han R.-Z, Shen M.-H. Angew. Chem. Int. Ed. 2016; 55: 2540
    • 11c Zhu Z, Tang X, Li J, Li X, Wu W, Deng G, Jiang H. Org. Lett. 2017; 19: 1370
    • 11d Tejeda JE. C, Irwin LC, Kerr MA. Org. Lett. 2016; 18: 4738
    • 11e Siyang HX, Ji XY, Wu XR, Wu XY, Liu PN. Org. Lett. 2016; 18: 2323
    • 11f Xiang L, Niu Y, Pang X, Yang X, Yan R. Chem. Commun. 2015; 51: 6598
    • 11g Zhu Z, Tang X, Li X, Wu W, Deng G, Jiang H. J. Org. Chem. 2016; 81: 1401
    • 11h Hu B, DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844
    • 12a Zhang F.-L, Wang Y.-F, Lonca GH, Zhu X, Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390
    • 12b Katori T, Itoh S, Sato M, Yamataka H. J. Am. Chem. Soc. 2010; 132: 3413
    • 12c Hassner A, Ferdinand ES, Isbister RJ. J. Am. Chem. Soc. 1970; 92: 1672
    • 12d Dey R, Banerjee P. Org. Lett. 2017; 19: 304
    • 12e Zhang Z, Kumar RK, Li G, Wu D, Bi X. Org. Lett. 2015; 17: 6190
    • 13a Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 13b Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 13c Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 14 Ning Y, Mekareeya A, Babu KR, Anderson EA, Bi X. ACS Catal. 2019; 9: 4203
    • 15a Qin H.-T, Wu S.-W, Liu J.-L, Liu F. Chem. Commun. 2017; 53: 1696
    • 15b Chen W, Liu X, Chen E, Chen B, Shao J, Yu Y. Org. Chem. Front. 2017; 4: 1162
    • 16a Ning Y, Zhao X.-F, Wu Y.-B, Bi X. Org. Lett. 2017; 19: 6240
    • 16b Wang X, Li H, Qiu G, Wu J. Chem. Commun. 2019; 55: 2062
    • 17a Wang Y.-F, Chiba S. J. Am. Chem. Soc. 2009; 131: 12570
    • 17b Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
    • 17c Lei W.-L, Feng K.-W, Wang T, Wu L.-Z, Liu Q. Org. Lett. 2018; 20: 7220
    • 17d Mao L.-L, Zheng D.-G, Zhu X.-H, Zhou A.-X, Yang S.-D. Org. Chem. Front. 2018; 5: 232
    • 18a Wang X.-Y, Zhong Y.-F, Mo Z.-Y, Wu S.-H, Xu Y.-L, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2020; in press DOI: 10.1002/adsc.202001192.
    • 18b He M.-X, Mo Z.-Y, Wang Z.-Q, Cheng S.-Y, Xie R.-R, Tang H.-T, Pan Y.-M. Org. Lett. 2020; 22: 724
    • 18c Meng X.-J, Zhong P.-F, Wang Y.-M, Wang H.-S, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2020; 362: 506
  • 19 Kong X, Liu Y, Lin L, Chen Q, Xu B. Green Chem. 2019; 21: 3796
  • 20 Mulina OM, Zhironkina NV, Paveliev SA, Demchuk DV, Terent’ev AO. Org. Lett. 2020; 22: 1818
  • 21 Zhong P.-F, Lin H.-M, Wang L.-W, Mo Z.-Y, Meng X.-J, Tang H.-T, Pan Y.-M. Green Chem. 2020; 22: 6334
  • 22 Ning Y, Zhao X.-F, Wu Y.-B, Bi X. Org. Lett. 2017; 19: 6240
    • 23a Hassner A, Belinka BA. Jr. J. Am. Chem. Soc. 1980; 102: 6185
    • 23b Kong X, Liu Y, Lin L, Chen Q, Xu B. Green Chem. 2019; 21: 3796
  • 24 General Procedure for the Synthesis of gem-Bisphenylthio Enamine 3aa The azide 1a (0.3 mmol), thiophenol 2a (0.75 mmol), DBU (0.6 mmol), and TBAI (0.03 mmol) were placed in a 10 mL three-necked round-bottomed flask. The flask was equipped with a condenser and graphite rod as cathode and anode. MeOH (6.0 mL) was added. The electrolysis was carried out under air atmosphere at room temperature using a constant current of 3 mA until complete consumption of the substrate (monitored by TLC, about 1 h). The reaction mixture was concentrated, and the residue was chromatographed through silica gel eluting with ethyl acetate/petroleum ether to give the product 3aa.
  • 25 Analytical Data for Compound 3aa 88% yield; yellow solid; mp 94.1–95.4 °C. Analytical TLC on silica gel. Rf = 0.48 (hexane/ether; 6.1). 1H NMR (400 MHz, CDCl3): δ = 8.19 (d, J = 8.4 Hz, 2 H), 7.66 (d, J = 8.4 Hz, 2 H), 7.22–7.17 (m, 2 H), 7.14–7.04 (m, 6 H), 5.04 (s, 2 H), 2.33 (s, 3 H), 2.31 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 158.0, 148.1, 143.8, 136.0, 135.3, 134.7, 131.8, 129.9, 129.7, 129.1, 127.8, 126.5, 123.5, 91.0, 21.0, 21.0. HRMS (ESI): m/z calcd for C22H21N2O2S2 [M + H]+: 409.1039; found: 409.1036.