Synlett 2021; 32(08): 838-844
DOI: 10.1055/a-1335-7330
letter

The Use of 5-Hydroxymethylfurfural towards Fine Chemicals: Synthesis and Direct Arylation of 5-HMF-Based Oxazoles

a   Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 Rue Victor Grignard, 69621, Villeurbanne Cedex, France
b   Laboratório de Química Farmacêutica Medicinal, Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Campus Universitário, 88040900, Florianópolis, Brasil
,
Lucie Grand
a   Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 Rue Victor Grignard, 69621, Villeurbanne Cedex, France
,
Eloir P. Schenkel
b   Laboratório de Química Farmacêutica Medicinal, Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Campus Universitário, 88040900, Florianópolis, Brasil
,
Lílian Sibelle Campos Bernardes
b   Laboratório de Química Farmacêutica Medicinal, Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Campus Universitário, 88040900, Florianópolis, Brasil
,
Maïwenn Jacolot
a   Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 Rue Victor Grignard, 69621, Villeurbanne Cedex, France
,
a   Université de Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 1 Rue Victor Grignard, 69621, Villeurbanne Cedex, France
› Author Affiliations
This research was partly funded by CNPq and CAPES through a PrInt scholarship granted to RdR.


Abstract

5-Hydroxymethylfurfural (5-HMF) is a renewable platform chemical used as a source for obtaining diverse fine chemicals. In this letter, we report the synthesis of 5-HMF-based oxazole compounds. While 5-HMF could be easily converted into the oxazole derivative through the Van Leusen reaction, the direct arylation step needed to access the final compounds was problematic at first. After optimization, a palladium-catalyzed procedure has been developed and used for the synthesis of a series of 33 derivatives. This article reports an extension of the late-stage CH arylation reaction as an application to the oxazole platform derived from biosourced 5-HMF. The challenges in the preparation of the derivatives containing some electron-withdrawing substituents were overcome by the use of a palladium-free method.

Supporting Information



Publication History

Received: 24 September 2020

Accepted after revision: 11 December 2020

Accepted Manuscript online:
11 December 2020

Article published online:
02 March 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Teong SP, Yi G, Zhang Y. Green Chem. 2014; 16: 2015
  • 2 Agarwal B, Kailasam K, Sangwan RS, Elumalai S. Renewable Sustainable Energy Rev. 2018; 82: 2408
  • 3 Subbiah S, Simeonov SP, Esperança JM. S. S, Rebelo LP. N, Afonso CA. M. Green Chem. 2013; 15: 2849
  • 4 Partenheimer W, Grushin VV. Adv. Synth. Catal. 2001; 343: 102
  • 5 Amarasekara AS, Green D, Williams LD. Eur. Polym. J. 2009; 45: 595
  • 6 Xiang T, Liu X, Yi P, Guo M, Chen Y, Wesdemiotis C, Xu J, Pang Y. Polym. Int. 2013; 62: 1517
  • 7 Hameed S, Lin L, Wang A, Luo W. Catalysts 2020; 10: 120
  • 8 Wozniak B, Tin S, de Vries JG. Chem. Sci. 2019; 10: 6024
  • 9 Kucherov FA, Romashov LV, Galkin KI, Ananikov VP. ACS Sustain. Chem. Eng. 2018; 6: 8064
  • 10 Fan W, Verrier C, Queneau Y, Popowycz F. Curr. Org. Synth. 2019; 16: 583
  • 11 Fan W, Queneau Y, Popowycz F. RSC Adv. 2018; 8: 31496
  • 12 Fan W, Queneau Y, Popowycz F. Green Chem. 2018; 20: 485
  • 13 Gomtsyan A. Chem. Heterocycl. Compd. 2012; 48: 7
  • 14 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
  • 15 Walsh CT. Tetrahedron Lett. 2015; 56: 3075
  • 16 Zhang H.-Z, Zhao Z.-L, Zhou C.-H. Eur. J. Med. Chem. 2018; 144: 444
  • 17 Jin Z. Nat. Prod. Rep. 2011; 28: 1143
  • 18 Miyake F, Hashimoto M, Tonsiengsom S, Yakushijin K, Horne DA. Tetrahedron 2010; 66: 4888
  • 19 Iwanowicz EJ, Watterson SH, Guo J, Pitts WJ, Murali Dhar TG, Shen Z, Chen P, Gu HH, Fleener CA, Rouleau KA, Cheney DL, Townsend RM, Hollenbaugh DL. Bioorg. Med. Chem. Lett. 2003; 13: 2059
  • 20 Abhale YK, Sasane AV, Chavan AP, Shekh SH, Deshmukh KK, Bhansali S, Nawale L, Sarkar D, Mhaske PC. Eur. J. Med. Chem. 2017; 132: 333
  • 21 Landowski TH, Samulitis BK, Dorr RT. Invest. New Drugs 2013; 31: 1616
  • 22 Sohda T, Mizuno K, Momose Y, Ikeda H, Fujita T, Meguro K. J. Med. Chem. 1992; 35: 2617
  • 23 Lowe DB, Bifulco N, Bullock WH, Claus T, Coish P, Dai M, Dela Cruz FE, Dickson D, Fan D, Hoover-Litty H, Li T, Ma X, Mannelly G, Monahan M.-K, Muegge I, O’Connor S, Rodriguez M, Shelekhin T, Stolle A, Sweet L, Wang M, Wang Y, Zhang C, Zhang H.-J, Zhang M, Zhao K, Zhao Q, Zhu J, Zhu L, Tsutsumi M. Bioorg. Med. Chem. Lett. 2006; 16: 297
  • 24 Dang Q, Kasibthatla SR, Jiang T, Taplin F, Gibson T, Potter SC, van Poelje PD, Erion MD. MedChemComm 2011; 2: 287
  • 25 Dow RL, Bechle BM, Chou TT, Clark DA, Hulin B, Stevenson RW. J. Med. Chem. 1991; 34: 1538
  • 26 Moriya T, Seki M, Takabe S, Matsumoto K, Takashima K, Mori T, Odawara A, Takeyama S. J. Med. Chem. 1988; 31: 1197
  • 27 Boger DL, Miyauchi H, Du W, Hardouin C, Fecik RA, Cheng H, Hwang I, Hedrick MP, Leung D, Acevedo O, Guimarães CR. W, Jorgensen WL, Cravatt BF. J. Med. Chem. 2005; 48: 1849
  • 28 Malamas MS, Carlson RP, Grimes D, Howell R, Glaser K, Gunawan I, Nelson JA, Kanzelberger M, Shah U, Hartman DA. J. Med. Chem. 1996; 39: 237
  • 29 Romero FA, Du W, Hwang I, Rayl TJ, Kimball FS, Leung D, Hoover HS, Apodaca RL, Breitenbucher JG, Cravatt BF, Boger DL. J. Med. Chem. 2007; 50: 1058
  • 30 Jumppanen M, Kinnunen SM, Välimäki MJ, Talman V, Auno S, Bruun T, Boije af Gennäs G, Xhaard H, Aumüller IB, Ruskoaho H, Yli-Kauhaluoma J. J. Med. Chem. 2019; 62: 8284
  • 31 Ibrar A, Khan I, Abbas N, Farooq U, Khan A. RSC Adv. 2016; 6: 93016
  • 32 Bresciani S, Tomkinson NC. O. Heterocycles 2014; 89: 2479
  • 33 van Leusen AM, Hoogenboom BE, Siderius H. Tetrahedron Lett. 1972; 13: 2369
  • 34 Savanur HM, Kalkhambkar RG, Laali KK. Eur. J. Org. Chem. 2018; 5285
  • 35 Caro-Diaz EJ. E, Urbano M, Buzard DJ, Jones RM. Bioorg. Med. Chem. Lett. 2016; 26: 5378
  • 36 Ohta A, Akita Y, Ohkuwa T, Chiba M, Fukunaga R, Miyafuji A, Nakata T, Tani N, Aoyagi Y. Heterocycles 1990; 31: 1951
  • 37 Ohta A, Aoyagi Y, Inoue A, Koizumi I, Hashimoto R, Tokunaga K, Gohma K, Komatsu J, Sekine K, Miyafuji A, Kunoh J, Honma R, Akita Y. Heterocycles 1992; 33: 257
  • 38 Pivsa-Art S, Satoh T, Kawamura Y, Miura M, Nomura M. Bull. Chem. Soc. Jpn. 1998; 71: 467
  • 39 Verrier C, Lassalas P, Théveau L, Quéguiner G, Trécourt F, Marsais F, Hoarau C. Beilstein J. Org. Chem. 2011; 7: 1584
  • 40 Hirano K, Miura M. Top. Catal. 2014; 57: 878
  • 41 Hirano K, Miura M. Synlett 2011; 294
  • 42 Liu B, Guo Q, Cheng Y, Lan J, You J. Chem. Eur. J. 2011; 17: 13415
  • 43 Li C, Li P, Yang J, Wang L. Chem. Commun. 2012; 48: 4214
  • 44 Zhou PX, Shi S, Wang J, Zhang Y, Li C, Ge C. Inorg. Chem. Front. 2019; 6: 1942
  • 45 Hachiya H, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2010; 49: 2202
  • 46 Hachiya H, Hirano K, Satoh T, Miura M. ChemCatChem 2010; 2: 1403
  • 47 Yang F, Xu Z, Wang Z, Yu Z, Wang R. Chem. Eur. J. 2011; 17: 6321
  • 48 Ranjit S, Liu X. Chem. Eur. J. 2011; 17: 1105
  • 49 Liu C, Wang Z, Wang L, Li P, Zhang Y. Org. Biomol. Chem. 2019; 17: 9209
  • 50 Shi X, Soulé JF, Doucet H. Adv. Synth. Catal. 2019; 361: 4748
  • 51 Flegeau EF, Popkin ME, Greaney MF. Org. Lett. 2008; 10: 2717
  • 52 Shibahara F, Yamauchi T, Yamaguchi E, Murai T. J. Org. Chem. 2012; 77: 8815
  • 53 Besselièvre F, Lebrequier S, Mahuteau-Betzer F, Piguel S. Synthesis 2009; 3511
  • 54 Shen X.-B, Zhang Y, Chen W.-X, Xiao Z.-K, Hu T.-T, Shao L.-X. Org. Lett. 2014; 16: 1984
  • 55 Hachiya H, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 1737
  • 56 Yamamoto T, Muto K, Komiyama M, Canivet J, Yamaguchi J, Itami K. Chem. Eur. J. 2011; 17: 10113
  • 57 Larson H, Schultz D, Kalyani D. J. Org. Chem. 2019; 84: 13092
  • 58 Regalla VR, Addada RK. R, Puli VS, Saxena AS, Chatterjee A. Asian J. Pharm. Clin. Res. 2018; 11: 511
  • 59 Yoshizumi T, Satoh T, Hirano K, Matsuo D, Orita A, Otera J, Miura M. Tetrahedron Lett. 2009; 50: 3273
  • 60 Besselièvre F, Mahuteau-Betzer F, Grierson DS, Piguel S. J. Org. Chem. 2008; 73: 3278
  • 61 Sharma A, Vacchani D, Van der Eycken E. Chem. Eur. J. 2013; 19: 1158
  • 62 Bheeter CB, Chen L, Soulé J.-F, Doucet H. Catal. Sci. Technol. 2016; 6: 2005
  • 63 Mukhopadhyay C, Becker FF, Banik BK. J. Chem. Res. 2001; 28
  • 64 Forryan CL, Compton RG, Klymenko OV, Brennan CM, Taylor CL, Lennon M. Phys. Chem. Chem. Phys. 2006; 8: 633
  • 65 Dijkstra G, Kruizinga WH, Kellogg RM. J. Org. Chem. 1987; 52: 4230
  • 66 European Union ECHA – European Chemicals Agency (accessed Apr 7, 2020): https://echa.europa.eu/fr/home
  • 67 Huang J, Chan J, Chen Y, Borths CJ, Baucom KD, Larsen RD, Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
  • 68 Bellina F, Cauteruccio S, Mannina L, Rossi R, Viel S. Eur. J. Org. Chem. 2006; 693
  • 69 General Procedure A for Direct Arylation (Palladium-Catalyzed) 2-Oxazolyl-5-hydroxymethyl-furan 4 (0.30 mmol, 50 mg, 1 equiv), aryl iodide (0.36 mmol, 1.2 equiv), Pd(OAc)2 (0.030 mmol, 7 mg, 10 mol%), anhydrous K2CO3 (0.60 mmol, 82 mg, 2 equiv), and CuI 99.999% (0.30 mmol, 57 mg, 1 equiv) were added to an oven-dried reaction tube. The vial was placed under inert atmosphere by performing three vacuum-nitrogen cycle and anhydrous DMF (1 mL) was added. Then, the vial was sealed and heated to 100 °C for 24 h. After cooling down to room temperature, the reaction was diluted in methanol, filtered through a Celite® pad and concentrated under vacuum. The purification of the final compounds was done by column chromatography (SiO2, pentane/ethyl acetate). Characterization Data of 2-(4-Methoxyphen-1-yl)-5-(5-hydroxymethylfuran-2-yl)oxazole (5) 1H NMR (400 MHz, CD3OD): δ = 3.88 (s, 3 H, H5′), 4.58 (s, 2 H, H6′′), 6.47 (d, J = 3.5 Hz, 1 H, H4′′), 6.75 (d, J = 3.5 Hz, 1 H, H3′′), 7.06 (d, J = 9.0 Hz, 2 H, 2 H3′), 7.36 (s, 1 H, H4), 7.99 (d, J = 9.0 Hz, 2 H, 2 H2′). 13C NMR (100 MHz, CD3OD): δ = 56.0 (C5′), 57.3 (C6′′), 109.2 (C3′′), 110.4 (C4′′), 115.6 (2 C3′), 120.5 (C1′), 123.4 (C4), 129.1 (2 C2′), 144.3 (C2′′), 144.9 (C5), 157.0 (C5′′), 162.5 (C2), 163.5 (C4′). IR (ATR): ν = 2924, 2162, 1610, 1504, 1254, 1014, 739 cm–1. HRMS-ESI: m/z [M + H]+ calcd for C15H14NO4: 272.0923; found: 272.0916; mp 144.5–145.6 °C.
  • 70 Muzart J. Tetrahedron 2003; 59: 5789
  • 71 Costa G, Reisenhofer E, Stefani L. J. Inorg. Nucl. Chem. 1965; 27: 2581
  • 72 General Procedure B for Direct Arylation (Copper(I)-Mediated) 2-Oxazolyl-5-hydroxymethylfuran (0.30 mmol, 50 mg, 1 equiv), aryl iodide (p-cyano-iodobenzene, p-nitro-iodobenzene, o-chloro-iodobenzene, m-fluoro-iodobenzene, or m-chloro-iodobenzene, 0.36 mmol, 1.2 equiv), triphenylphosphine (0. 060 mmol, 15 mg, 20 mol%), anhydrous K2CO3 (0.60 mmol, 82 mg, 2 equiv), and CuI 99.999% (0.30 mmol, 57 mg, 1 equiv) were added to an oven-dried reaction tube. The vial was placed under inert atmosphere by performing three vacuum-nitrogen cycle and anhydrous DMF (1 mL) was added. Then, the vial was sealed and heated to 100 °C for 24 h. After cooling down to room temperature, the reaction was diluted in methanol, filtered through a Celite® pad and concentrated under vacuum. The purification of the final compounds was done by column chromatography (SiO2, pentane/ethyl acetate).