Synthesis 2021; 53(13): 2212-2218
DOI: 10.1055/a-1331-7346
paper

Mild and Efficient Copper-Catalyzed Synthesis of Trisubstituted Pyrroles

Ming-Hua Hsu
a   Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
,
Mohit Kapoor
b   Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140 401, India
,
Tapan Kumar Pradhan
c   Department of Chemistry and Frontier Research Center on Fundamental & Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
,
Man-Him Tse
a   Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
,
Hsin-Ya Chen
a   Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
,
Man-Jun Yan
a   Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
,
Yu-Tsen Cheng
a   Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
,
Yu-Cheng Lin
a   Department of Chemistry, National Changhua University of Education, Changhua 50007, Taiwan
,
Cheng-Ying Hsieh
d   Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
,
Ker-Yin Liu
d   Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
,
Chien-Chung Han
d   Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
› Author Affiliations
The project was supported by the Ministry of Science and Technology (MOST 106-2113-M -018-008, MOST 107-2113-M-018-008, MOST 108-2113-M-018-009). M. Kapoor thanks the Start-up funding from Chitkara University and Chitkara University Research and Innovation Network.


Abstract

A sustainable and time economic approach has been developed for the synthesis of polysubstituted pyrroles using copper iodide as a catalyst. The reaction proceeded through imine formation followed by cyclization with alkyne-Cu intermediate, which was supported by control experiments studies. The newly formed substituted pyrroles were obtained in excellent yields with high regioselectivity under mild conditions.

Supporting Information



Publication History

Received: 24 September 2020

Accepted after revision: 07 December 2020

Accepted Manuscript online:
07 December 2020

Article published online:
02 March 2021

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
  • 2 Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Eur. J. Med. Chem. 2018; 157: 527
  • 3 Herath A, Cosford ND. Org. Lett. 2010; 12: 5182
  • 4 Leonardi M, Estévez V, Villacampa M, Menéndez JC. Synthesis 2019; 51: 816
  • 5 Aghapoor K, Ebadi-Nia L, Mohsenzadeh F, Morad MM, Balavar Y, Darabi HR. J. Organomet. Chem. 2012; 708: 25
  • 6 Rahmatpour A. J. Organomet. Chem. 2012; 712: 15
  • 7 Balakrishna A, Aguiar A, Sobral PJ. M, Wani MY, Almeida e Silva J, Sobral AJ. F. N. Catal. Rev. 2019; 61: 84
  • 8 Azizi N, Khajeh-Amiri A, Ghafuri H, Bolourtchian M, Saidi MR. Synlett 2009; 2245
  • 9 Alberola A, Ortega AG, Sádaba ML, Sañudo C. Tetrahedron 1999; 55: 6555
  • 10 Shiner CM, Lash TD. Tetrahedron 2005; 61: 11628
  • 11 Larionov OV, de Meijere A. Angew. Chem. Int. Ed. 2005; 44: 5664
  • 12 Liu Y, Hu H, Wang X, Zhi S, Kan Y, Wang C. J. Org. Chem. 2017; 82: 4194
  • 13 Mali PR, Khomane NB, Sridhar B, Meshram H, Likhar PR. New J. Chem. 2018; 42: 13819
  • 14 Arrieta A, Otaegui D, Zubia A, Cossio FP, Diaz-Ortiz A, de la Hoz A, Herrero MA, Prieto P, Foces-Foces C, Pizarro JL. J. Org. Chem. 2007; 72: 4313
  • 15 Wang Z, Shi Y, Luo X, Han D.-M, Deng W.-P. New J. Chem. 2013; 37: 1742
  • 16 Michlik S, Kempe R. Nat. Chem. 2013; 5: 140
  • 17 Srimani D, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2013; 52: 4012
  • 18 Zhang M, Neumann H, Beller M. Angew. Chem. Int. Ed. 2013; 52: 597
  • 19 Leonardi M, Villacampa M, Menéndez JC. Chem. Sci. 2018; 9: 2042
  • 20 Wang X, Xu X.-P, Wang S.-Y, Zhou W, Ji S.-J. Org. Lett. 2013; 15: 4246
  • 21 Zhang M, Fang X, Neumann H, Beller M. J. Am. Chem. Soc. 2013; 135: 11384
  • 22 Chen Z, Lu B, Ding Z, Gao K, Yoshikai N. Org. Lett. 2013; 15: 1966
  • 23 Zheng J, Huang L, Li Z, Wu W, Li J, Jiang H. Chem. Commun. 2015; 51: 5894
  • 24 Shi Z, Suri M, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 4892
  • 25 Matsui K, Shibuya M, Yamamoto Y. Commun. Chem. 2018; 1: 21
  • 26 Robles-Machín R, López-Pérez A, González-Esguevillas M, Adrio J, Carretero JC. Chem. Eur. J. 2010; 16: 9864
  • 27 Tian Z, Xu J, Liu B, Tan Q, Xu B. Org. Lett. 2018; 20: 2603
  • 28 Yasukawa N, Kuwata M, Imai T, Monguchi Y, Sajiki H, Sawama Y. Green Chem. 2018; 20: 4409
  • 29 Su S, Porco JA. J. Am. Chem. Soc. 2007; 129: 7744
  • 30 Rakshit S, Patureau FW, Glorius F. J. Am.Chem. Soc. 2010; 132: 9585
  • 31 Neumann JJ, Suri M, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7790
  • 32 Huestis MP, Chan L, Stuart DR, Fagnou K. Angew. Chem. Int. Ed. 2011; 50: 1338
  • 33 Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am.Chem. Soc. 2010; 132: 18326
  • 34 Srimani D, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2013; 52: 4012
  • 35 Iida K, Miura T, Ando J, Saito S. Org. Lett. 2013; 15: 1436
  • 36 Su Z, Gu W, Qian S, Xue S, Wang C. Eur. J. Org. Chem. 2018; 1019
  • 37 Gilbert ZW, Hue RJ, Tonks IA. Nat. Chem. 2016; 8: 63
  • 38 Zhao M.-N, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Chem. Eur. J. 2014; 20: 1839
  • 39 Tang X, Huang L, Qi C, Wu W, Jiang H. Chem. Commun. 2013; 49: 9597
  • 40 Borghs JC, Azofra LM, Biberger T, Linnenberg O, Cavallo L, Rueping M, El-Sepelgy O. ChemSusChem 2019; 12: 3083
  • 41 Hwu JR, Roy A, Panja A, Huang W.-C, Hu Y.-C, Tan K.-T, Lin C.-C, Hwang K.-C, Hsu M.-H, Tsay S.-C. J. Org. Chem. 2020; 85: 9835
  • 42 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
  • 43 Rodionov VO, Fokin VV, Finn MG. Angew. Chem. Int. Ed. 2005; 44: 2210
  • 44 Lin ZQ, Li C.-D, Zhou Z.-C, Xue S, Gao J.-R, Ye Q, Li Y.-J. Synlett 2019; 30: 1442