Synlett
DOI: 10.1055/a-1314-0064
cluster
Late-Stage Functionalization

Rhodium-Catalyzed, Phosphorus(III)-Directed Hydroarylation of Internal Alkynes: Facile and Efficient Access to New Phosphine Ligands

Huanhuan Luo
a  State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
b  School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. of China
,
Dawei Wang
b  School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. of China
,
Minyan Wang
a  State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
,
a  State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
› Author Affiliations
This work is supported by the National Natural Science Foundation of China (Nos. 21972064, 21901111) and by the National Natural Science Foundation of Jiangsu Province (No. BK20170632), the Excellent Youth Foundation of Jiangsu Scientific Committee (No. BK20180007), and the Innovation and Entrepreneurship Talents Plan of Jiangsu Province.


Abstract

Organophosphines are an important class of ligands widely used in organic chemistry. Although great progress has recently been made in the rapid construction of new phosphines through Rh- or Ru-catalyzed C–H bond functionalizations, synthetic access to more diverse phosphines remains a challenge. We describe an efficient process for the rhodium-catalyzed phosphorus(III)-directed hydroarylation of internal alkynes to generate various alkenylated and 2′,6′-dialkenylated biarylphosphines with high selectivity. A range of diverse alkynes and phosphines were effectively prepared with broad functional-group compatibility under the optimized conditions. In addition, the developed protocol can be extended to modify chiral phosphine ligands, providing enantioenriched alkenylated phosphines without erosion of the enantiomeric excess.

Supporting Information



Publication History

Received: 14 October 2020

Accepted after revision: 18 November 2020

Publication Date:
18 November 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 2a Berrisford DJ, Bolm C, Sharpless KB. Angew. Chem. Int. Ed. 1995; 34: 1059
    • 2b Li Y.-M, Kwong F.-Y, Yu W.-Y, Chan AS. C. Coord. Chem. Rev. 2007; 251: 2119
    • 2c Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 2d Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 3a Hu R.-B, Zhang H, Zhang X.-Y, Yang S.-D. Chem. Commun. 2014; 50: 2193
    • 3b Ma Y.-N, Yang S.-D. Chem. Eur. J. 2015; 21: 6673
    • 3c Aranyos A, Old DW, Kiyomori A, Wolfe JP, Sadighi JP, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 4369
    • 3d Hayaship T, Ishigedani M. Tetrahedron 2001; 57: 2589
    • 3e Bonnafoux L, Leroux FR, Colobert F. Beilstein J. Org. Chem. 2011; 7: 1278
    • 3f Fer MJ, Cinqualbre J, Bortoluzzi J, Chessé M, Leroux FR, Panossian A. Eur. J. Org. Chem. 2016; 4545
    • 4a Shelby Q, Kataoka N, Mann G, Hartwig J. J. Am. Chem. Soc. 2000; 122: 10718
    • 4b Mann G, Incarvito C, Rheingold AL, Hartwig JF. J. Am. Chem. Soc. 1999; 121: 3224
    • 5a Qiu X, Wang M, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 7233 ; Angew. Chem. 2017, 129, 7339
    • 5b Luo X, Yuan J, Yue C.-D, Zhang Z.-Y, Chen J, Yu G.-A, Che C.-M. Org. Lett. 2018; 20: 1810
    • 5c Qiu X, Deng H, Zhao Y, Shi Z. Sci. Adv. 2018; 4: aau6468
    • 5d Qiu X, Wang P, Wang D, Wang M, Yuan Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 1504 ; Angew. Chem. 2019, 131, 1518
    • 5e Li J.-W, Wang L.-N, Li M, Tang P.-T, Luo X.-P, Kurmoo M, Liu Y.-J, Zeng M.-H. Org. Lett. 2019; 21: 2885
  • 6 Wang D, Dong B, Wang Y, Qian J, Zhu J, Zhao Y, Shi Z. Nat. Commun. 2019; 10: 3539
    • 7a Borah AJ, Shi Z. J. Am. Chem. Soc. 2018; 140: 6062
    • 7b Zhang Z, Roisnel T, Dixneuf PH, Soulé JF. Angew. Chem. Int. Ed. 2019; 58: 14110 ; Angew. Chem. 2019, 131, 14248
    • 7c Li J.-W, Wang L.-N, Li M, Tang P.-T, Zhang N.-J, Li T, Zeng M.-H. Org. Lett. 2020; 22: 1331
    • 8a Crawford KM, Ramseyer TR, Daley CJ. A, Clark TB. Angew. Chem. Int. Ed. 2014; 53: 7589 ; Angew. Chem. 2014, 126: 7719
    • 8b Wright SE, Richardson-Solorzano S, Stewart TN, Miller CD, Morris KC, Daley CJ. A, Clark TB. Angew. Chem. Int. Ed. 2019; 58: 2834 ; Angew. Chem. 2019, 131, 2860
    • 8c Wen J, Wang D, Qian J, Wang D, Zhu C, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 2078 ; Angew. Chem. 2019, 131, 2100
  • 9 Wang D, Zhao Y, Yuan C, Wen J, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 12529 ; Angew. Chem. 2019, 131, 12659
    • 10a Shintani R, Duan W.-L, Nagano T, Okada A, Hayashi T. Angew. Chem. Int. Ed. 2005; 44: 4611 ; Angew. Chem. 2005, 117, 4687
    • 10b Ma Y.-N, Li S.-X, Yang S.-D. Acc. Chem. Res. 2017; 50: 1480
  • 11 Zhang Z, Cordier M, Dixneuf PH, Soulé J.-F. Org. Lett. 2020; 22: 5936
  • 12 (2′-Alkenylbiaryl-2-yl)(diphenyl)phosphines 3aada; General Procedure A In an oven-dried 25-mL Schlenk tube with a Teflon screw cap, the appropriate diarylphosphine 1 (0.20 mmol, 1.0 equiv), alkyne 2 (0.20 mmol, 1.0 equiv), [Rh(COD)Cl]2 (4.9 mg, 0.01 mmol, 5 mol%), and NaOPiv (49.6 mg, 0.40 mmol, 2.0 equiv) were dissolved in CH2Cl2 (2.0 mL) under N2. The mixture was stirred at 100 °C for 12 h until the starting material was completely consumed (TLC), then cooled to r.t. The solvent was removed and the residue was directly purified by column chromatography (silica gel). {2′-[(1E)-1-Ethylbut-1-en-1-yl]biphenyl-2-yl}(diphenyl)phosphine(3aa). Prepared according to General Procedure A, from biphenyl-2-yl(diphenyl)phosphine (1a; 67.6 mg, 0.20 mmol, 1.0 equiv), hex-3-yne (2a; 16.4 mg, 0.20 mmol, 1.0 equiv), [Rh(COD)Cl]2 (2.5 mg, 0.01 mmol, 5 mol%), and PivONa (49.6 mg, 0.40 mmol, 2.0 equiv) in CH2Cl2 (2.0 mL) at 100 °C under N2 for 12 h, and purified by column chromatography [silica gel, PE–CH2Cl2 (20:1)] as a colorless oil; yield: 58.8 mg (70%). ATR-FTIR: 3054, 1434, 1264, 734, 702, 449, 418 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.36–7.32 (m, 3 H), 7.32–7.26 (m, 6 H), 7.257.20 (m, 3 H), 7.19–7.08 (m, 4 H), 7.05–6.99 (m, 1 H), 6.79–6.72 (m, 1 H), 5.39 (t, J = 7.3 Hz, 1 H), 2.12–1.82 (m, 4 H), 0.90–0.81 (m, 6 H). 13C NMR (101 MHz, CDCl3): δ = 148.5 (d, J = 32.8 Hz), 143.0, 141.6, 134.6 (d, J = 2.3 Hz), 134.0, 133.8, 133.54, 133.47, 133.3, 133.1, 132.9, 131.1 (d, J = 5.0 Hz), 130.7 (d, J = 5.8 Hz), 129.7, 128.4 (d, J = 3.0 Hz), 128.3 (d, J = 7.1 Hz), 128.2, 128.1, 128.0, 127.3, 127.0, 125.2, 23.7, 21.3, 14.2, 13.5 (d, J = 2.0 Hz). 31P NMR (162 MHz, CDCl3): δ = –15.0. HRMS (ESI): m/z [M + H]+ calcd for C30H30P: 421.2080; found: 421.2082.
  • 13 CCDC 2018128, 2018129, 2018130, and 20181301 contains the supplementary crystallographic data for compound 3ah, 3ai, 4af, and 4ag and respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures
  • 14 (2′-Alkenylbiaryl-2-yl)(diphenyl)phosphines 3eaja and (2′6′-Dialkenylbiaryl-2-yl)(diphenyl)phosphines 4abbd: General Procedure B In an oven-dried 25-mL Schlenk tube with a Teflon screw cap, the appropriate diarylphosphine 1 (0.20 mmol, 1.0 equiv), alkyne 2 (0.60 mmol, 3.0 equiv), [Rh(COD)Cl]2 (4.9 mg, 0.01 mmol, 5 mol%), and K2CO3 (55.2 mg, 0.40 mmol, 2.0 equiv) were dissolved in toluene (2.0 mL) under N2. The mixture was stirred at 120 °C for 12 h until the reaction was complete (TLC), then cooled at r.t. The solvent was removed, and the residue was directly purified by column chromatography (silica gel, PE–CH2Cl2). {2′,6′-Bis[(1E)-1-ethylbut-1-en-1-yl]biphenyl-2-yl}(diphenyl)phosphine (4aa) Prepared according to General Procedure B, from biphenyl-2-yl(diphenyl)phosphine (1a; 67.6 mg, 0.20 mmol, 1.0 equiv), hex-3-yne (2a; 49.3 mg, 0.6 mmol, 3.0 equiv), [Rh(COD)Cl]2 (2.5 mg, 0.01 mmol, 5 mol%), and K2CO3 (55.3 mg, 0.40 mmol, 2.0 equiv) in toluene (2.0 mL) at 120 °C under N2 for 12 h, and purified by column chromatography [silica gel, PE–CH2Cl2 (20:1)] as a yellow oil; yield: 82.7 mg (82%). ATR-FTIR: 3054, 1413, 1246, 896, 731, 703 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.49–7.42 (m, 1 H), 7.32–7.25 (m, 4 H), 7.26–7.20 (m, 6 H), 7.22–7.15 (m, 4 H), 7.13 (s, 1 H), 7.11 (s, 1 H), 5.17 (dd, J = 8.1, 6.2 Hz, 2 H), 1.90–1.79 (m, 2 H), 1.78–1.67 (m, 2 H), 1.63–1.53 (m, 4 H), 0.71 (t, J = 7.5 Hz, 6 H), 0.66 (t, J = 7.5 Hz, 6 H). 13C NMR (126 MHz, CDCl3): δ = 148.0 (d, J = 35.4 Hz), 144.1 (d, J = 1.5 Hz), 142.2, 139.8 (d, J = 15.1 Hz), 137.2 (d, J = 5.5 Hz), 136.2 (d, J = 13.0 Hz), 135.9 (d, J = 3.0 Hz), 133.5 (d, J = 1.5 Hz), 133.4, 133.3, 132.2 (d, J = 7.0 Hz), 128.8, 127.93, 127.87 (d, J = 6.1 Hz), 127.8, 127.7, 126.7 (d, J = 4.0 Hz), 23.7, 21.1, 14.0, 13.4. 31P NMR (202 MHz, CDCl3): δ = –15.0. HRMS (ESI): m/z [M + H]+ calcd for C36H40P: 503.2862; found: 503.2862.