Synlett
DOI: 10.1055/a-1310-5213
letter

Enantioselective Halocyclization of Indole Derivatives: Using 1,3-Dihalohydantoins with Anionic Chiral Co(III) Complexes

Ting-Ting Sun
,
Kun Liu
,
Shun-Xin Zhang
,
Chun-Ru Wang
,
Chuan-Zhi Yao
,
Jie Yu
We are grateful for financial support from the National Natural Science Foundation of China (NSFC, Grant 21672002), the Anhui Provincial Natural Science Funds for Distinguished Young Scholar (1908085J07), and the Shennong Scholar Program of Anhui Angricultural University and National Undergraduate Training Program for Innovation and Entrepreneurship (202010364039).


Abstract

Highly enantioselective halocyclization reactions of indole derivatives, including tryptophols and tryptamines, have been accomplished by means of anionic chiral Co(III) complexes and 1,3-dihalohydantoins (as little as 0.50 equiv). 3-Halo-fused indolines were obtained in excellent yields (up to 98%) and enantioselectivities (up to 98% ee), employing the chiral anion phase-transfer-catalysis strategy.

Supporting Information



Publication History

Received: 19 October 2020

Accepted after revision: 13 November 2020

Publication Date:
13 November 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Chen G, Ma S. Angew. Chem. Int. Ed. 2010; 49: 8306
    • 1b Castellanos A, Fletcher SP. Chem. Eur. J. 2011; 17: 5766
    • 1c Tan CK, Zhou L, Yeung Y.-Y. Synlett 2011; 1335
    • 1d Hennecke U. Chem. Asian J. 2012; 7: 456
    • 1e Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
    • 1f Chemler SR, Bovino MT. ACS Catal. 2013; 3: 1076
    • 1g Chen J, Zhou L. Synthesis 2014; 46: 586
    • 1h Cheng YA, Yu WZ, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333
    • 1i Zheng S, Schienebeck CM, Zhang W, Wang H.-Y, Tang W. Asian J. Org. Chem. 2014; 3: 366
    • 1j Cresswell AJ, Eey ST.-C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
    • 1k Liang X.-W, Zheng C, You S.-L. Chem. Eur. J. 2016; 22: 11918
    • 1l Mizar P, Wirth T. Synthesis 2017; 49: 981
    • 1m Gieuw MH, Ke Z, Yeung Y.-Y. Chem. Rec. 2017; 17: 287
    • 1n Cai Y, Liu X, Zhou P, Feng X. J. Org. Chem. 2019; 84: 1

      For selected early examples of asymmetric halofunctionalization, see:
    • 2a Kang SH, Lee SB, Park CM. J. Am. Chem. Soc. 2003; 125: 15748
    • 2b Haas J, Bissmire S, Wirth T. Chem. Eur. J. 2005; 11: 5777
    • 2c Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
    • 2d Rauniyar V, Lackner AD, Hamilton GL, Toste FD. Science 2011; 334: 1681
    • 2e Hennecke U, Mueller CH, Froehlich R. Org. Lett. 2011; 13: 860
    • 2f Huang D, Wang H, Xue F, Guan H, Li L, Peng X, Shi Y. Org. Lett. 2011; 13: 6350
    • 2g Cai Y, Liu X, Jiang J, Chen W, Lin L, Feng X. J. Am. Chem. Soc. 2011; 133: 5636
    • 2h Zhou L, Chen J, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2011; 133: 9164
    • 2i Denmark SE, Burk MT. Org. Lett. 2012; 14: 256
    • 3a Koval’ IV. Russ. J. Org. Chem. 2002; 38: 301
    • 3b Kolvani E, Ghorbani-Choghamarani A, Salehi P, Shirini F, Zolfigol MA. J. Iran. Chem. Soc. 2007; 4: 126
    • 3c Minakata S. Acc. Chem. Res. 2009; 42: 1172
    • 3d Veisi H, Ghorbani-Vaghei R, Zolfigol MA. Org. Prep. Proced. Int. 2011; 43: 489
    • 3e Tan CK, Yeung Y.-Y. Chem. Commum. 2013; 49: 7985
    • 3f Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
    • 3g de Andrade VS. C, de Mattos MC. S. Synthesis 2019; 51: 1841

      For selected examples of asymmetric halogenation involving DCDMH, see:
    • 4a Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J. Am. Chem. Soc. 2010; 132: 3298
    • 4b Jaganathan A, Garzan A, Whitehead DC, Staples RJ, Borhan B. Angew. Chem. Int. Ed. 2011; 50: 2593
    • 4c Zhang W, Liu N, Schienebeck CM, Decloux K, Zheng S, Werness JB, Tang W. Chem. Eur. J. 2012; 18: 7296
    • 4d Jaganathan A, Staples RJ, Borhan B. J. Am. Chem. Soc. 2013; 135: 14806
    • 4e Yin Q, You S.-L. Org. Lett. 2013; 15: 4266
    • 4f Yin Q, You S.-L. Org. Lett. 2014; 16: 1810
    • 4g Yin Q, You S.-L. Org. Lett. 2014; 16: 2426
    • 4h Soltanzadeh B, Jaganathan A, Staples RJ, Borhan B. Angew. Chem. Int. Ed. 2015; 54: 9517
    • 4i Yin Q, Wang S.-G, Liang X.-W, Gao D.-W, Zheng J, You S.-L. Chem. Sci. 2015; 6: 4179
    • 4j Cai Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2019; 58: 1315
    • 4k Wedek V, Van Lommel R, Daniliuc CG, De Proft F, Hennecke U. Angew. Chem. Int. Ed. 2019; 58: 9239

      For selected examples of asymmetric halogenation involving DBDMH, see:
    • 5a Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew. Chem. Int. Ed. 2010; 49: 9174
    • 5b Murai K, Nakamura A, Matsushita T, Shimura M, Fujioka H. Chem. Eur. J. 2012; 18: 8448
    • 5c Zhou L, Tay DW, Chen J, Leung GY. C, Yeung Y.-Y. Chem. Commun. 2013; 49: 4412
    • 5d Li Z, Shi Y. Org. Lett. 2015; 17: 5752
    • 5e Pan H, Huang H, Liu W, Tian H, Shi Y. Org. Lett. 2016; 18: 896
    • 5f Guo S, Cong F, Guo R, Wang L, Tang P. Nat. Chem. 2017; 9: 546
    • 5g Lu Y, Nakatsuji H, Okumura Y, Yao L, Ishihara K. J. Am. Chem. Soc. 2018; 140: 6039
    • 5h Wang Y.-F, Shao J.-J, Wang B, Chu M.-M, Qi S.-S, Du X.-H, Xu D.-Q. Adv. Synth. Catal. 2018; 360: 2285
  • 6 For an example of asymmetric halogenation involving DIDMH, see: Cai Y, Liu X, Li J, Chen W, Wang W, Lin L, Feng X. Chem. Eur. J. 2011; 17: 14916
    • 7a Jiang H.-J, Liu K, Yu J, Zhang L, Gong L.-Z. Angew. Chem. Int. Ed. 2017; 56: 11931
    • 7b Liu K, Jiang H.-J, Li N, Wang J, Zhang Z.-Z, Yu J. J. Org. Chem. 2018; 83: 6815
    • 7c Li N, Yu H, Wang R, Shen J, Wu W.-Q, Liu K, Sun T.-T, Zhang Z.-Z, Yao C.-Z, Yu J. Tetrahedron Lett. 2018; 59: 3605
    • 7d Wang R, Wu W.-Q, Li N, Shen J, Liu K, Yu J. Synlett 2019; 30: 1077

      For selected reviews, see:
    • 8a Lacour J, Hebbe-Viton V. Chem. Soc. Rev. 2003; 32: 373
    • 8b Lacour J, Moraleda D. Chem. Commun. 2009; 7073
    • 8c Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 8d Wenzel M, Hiscock JR, Gale PA. Chem. Soc. Rev. 2012; 41: 480
    • 8e Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
    • 8f Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 8g Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534

      For selected examples on chiral anions catalysis, see:
    • 9a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
    • 9b Sigman MS, Vachal P, Jacobsen EN. Angew. Chem. Int. Ed. 2000; 39: 1279
    • 9c Llewellyn DB, Adamson D, Arndtsen BA. Org. Lett. 2000; 2: 4165
    • 9d Carter C, Fletcher S, Nelson A. Tetrahedron: Asymmetry 2003; 14: 1995
    • 9e Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
    • 9f Hamilton GL, Kang EJ, Mba M, Toste FD. Science 2007; 317: 496
    • 9g Hamilton GL, Kanai T, Toste FD. J. Am. Chem. Soc. 2008; 130: 14984
    • 9h Yu J, Jiang H.-J, Zhou Y, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2015; 54: 11209
    • 9i Zhang X, Zhao K, Li N, Yu J, Gong L.-Z, Gu Z. Angew. Chem. Int. Ed. 2020; 59: 19899

      For recent reviews, see:
    • 10a Song J, Chen D.-F, Gong L.-Z. Natl. Sci. Rev. 2017; 4: 381
    • 10b Palmieri A, Petrini M. Nat. Prod. Rep. 2019; 36: 490
    • 10c Zheng C, You S.-L. Nat. Prod. Rep. 2019; 36: 1589

      For selected examples, see:
    • 11a Lozano O, Blessley G, del Campo TM, Thompson AL, Giuffredi GT, Bettati M, Walker M, Borman R, Gouverneur V. Angew. Chem. Int. Ed. 2011; 50: 8105
    • 11b Xie W, Jiang G, Liu H, Hu J, Pan X, Zhang H, Wan X, Lai Y, Ma D. Angew. Chem. Int. Ed. 2013; 52: 12924
    • 11c Liu H, Jiang G, Pan X, Wan X, Lai Y, Ma D, Xie W. Org. Lett. 2014; 16: 1908
    • 11d Feng X, Jiang G, Xia Z, Hu J, Wan X, Gao J.-M, Lai Y, Xie W. Org. Lett. 2015; 17: 4428
    • 11e Cai Q, Yin Q, You S.-L. Asian J. Org. Chem. 2014; 3: 408
    • 11f Liang X.-W, Liu C, Zhang W, You S.-L. Chem. Commun. 2017; 53: 5531
    • 11g Liang X.-W, Cai Y, You S.-L. Chin. J. Chem. 2018; 36: 925
  • 12 General Experimental Procedures for a Representative Iodocyclization to 3a A 10 mL oven-dried vial was charged with DIDMH (0.10 mmol or 0.05 mmol), catalyst Λ-1a (7.2 mg, 0.01 mmol), activated 4 Å MS (100.0 mg) and CCl4 (4.0 mL) at room temperature in the absence of light. The mixture was cooled to –20 °C and stirred for 30 min. A precooled solution of tryptophol 2a (0.10 mmol) in CCl4 (1.0 mL) was added dropwise to the mixture over 20 min, and the reaction was stirred vigorously until the reaction was complete (monitored by TLC). The reaction was then quenched with pre-cooled NEt3 (–20 °C, 1.0 mmol) and saturated aqueous Na2S2O3 (0.50 mL). After workup, the mixture was purified by flash column chromatography (silica gel, PE/EtOAc = 10:1) to give the enantioenriched product 3a. Yield for 1.0 equiv DIDMH, 37.9 mg (98%); yield for 0.5 equiv DIDMH, 32.5 mg (84%); (flash column chromatography eluent, PE/EtOAc = 10:1); colorless oil; [α]D 20 –82.6 (c 0.38 CH3OH). 1H NMR (600 MHz, CDCl3): δ = 7.79 (s, 1 H), 7.39 (d, J = 7.2 Hz, 1 H), 7.23 (t, J = 7.0 Hz, 1 H), 7.05 (t, J = 7.4 Hz, 1 H), 6.45–6.17 (m, 1 H), 3.85–3.76 (m, 1 H), 3.45–3.32 (m, 1 H), 2.99–2.86 (m, 2 H), 1.61 (s, 9 H). 13C NMR (151 MHz, CDCl3): δ = 151.92, 129.93, 125.17, 123.84, 115.02, 110.12, 103.32, 82.23, 67.81, 67.32, 47.91, 28.46. HRMS (ESI). m/z calcd for C15H18INNaO3 [M + Na]+: 410.0229; found: 410.0223; ee for 1.0 equiv DIDMH, 95%; ee for 0.5 equiv DIDMH, 92%; determined by HPLC (Daicel Chirapak IE, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t maj = 9.20 min, t min = 8.43 min.
  • 13 See the Supporting Information for details.
  • 14 CCDC 1938720 (3b) and 1938617 (4b) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via . www.ccdc.cam.ac.uk/getstructures
  • 15 General Experimental Procedures for a Representative Bromocyclization to 4a A 10 mL oven-dried vial was charged with DBDMH (0.10 mmol or 0.05 mmol), catalyst Λ-1a (7.2 mg, 0.01 mmol), activated 4 Å MS (100.0 mg) and PhMe/CCl4 (1:20, 4.0 mL) at room temperature in the absence of light. The mixture was cooled to –30 °C and stirred for 30 min. A precooled solution of tryptophol 2a (0.10 mmol) in PhMe/CCl4 (1:20, 1.0 mL) was added dropwise to the mixture over 20 min, and the reaction was stirred vigorously until the reaction was complete (monitored by TLC). The reaction was then quenched with pre-cooled NEt3 (–30 °C, 1.0 mmol) and saturated aqueous Na2S2O3 (0.50 mL). After workup. the mixture was purified by flash column chromatography (silica gel, PE/EtOAc = 10:1) to give the enantioenriched product 4a. Yield for 1.0 equiv DBDMH, 32.3 mg (95%); yield for 0.5 equiv DBDMH, 28.6 mg (84%); (flash column chromatography eluent, PE/EtOAc = 10:1); colorless oil; [α]D 20 –137.1 (c 0.32 CH3OH). 1H NMR (600 MHz, CDCl3): δ = 7.84 (s, 1 H), 7.41 (d, J = 7.5 Hz, 1 H), 7.28 (t, J = 7.8 Hz, 1 H), 7.08 (t, J = 7.5 Hz, 1 H), 6.34–6.12 (m, 1 H), 4.00 (t, J = 8.0 Hz, 1 H), 3.53–3.45 (m, 1 H), 2.94–2.86 (m, 1 H), 2.80 (dd, J = 12.3, 3.8 Hz, 1 H), 1.60 (s, 9 H). 13C NMR (151 MHz, CDCl3): δ = 151.86, 141.73, 131.86, 130.50, 124.87, 123.76, 115.00, 100.87, 82.28, 67.79, 61.77, 45.09, 28.43; ee for 1.0 equiv DBDMH, 96%; ee for 0.5 equiv DBDMH, 96%; determined by HPLC (Daicel Chirapak IC, hexane/isopropanol = 70:30, flow rate 1.0 mL/min, T = 30 °C, 254 nm): t maj = 4.41 min, t min = 4.04 min.
  • 16 Xu J, Tong R. Green Chem. 2017; 19: 2952