Synlett
DOI: 10.1055/a-1288-2990
synpacts

ANIPE-Cu Catalyst Enables Highly Enantioselective Markovnikov Hydroboration of α-Olefins

Yuan Cai
,
State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (NSF, Grant Numbers 91856111, 21871288, 21690074, and 21821002) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB20000000).


Abstract

Asymmetric hydroboration of simple and unactivated terminal alkenes (α-olefins), feedstock chemicals derived from the petrochemical industry, has not been efficiently realized for past decades. Using a bulky ANIPE ligand, we achieved a rare example of highly enantioselective copper-catalyzed Markovnikov hydroboration of α-olefins. The chiral secondary alkylboronic ester products were obtained in moderate to good yields and regioselectivities with excellent enantioselectivities.

1 Introduction

2 Conditions Optimization

3 Substrate Scope

4 Application

5 Mechanistic Discussion

6 Conclusions and Future Directions



Publication History

Received: 26 September 2020

Accepted after revision: 12 October 2020

Publication Date:
12 October 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Chen J, Guo J, Lu Z. Chin. J. Chem. 2018; 36: 1075
    • 1b Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
    • 1c Fan W, Li L, Zhang GJ. J. Org. Chem. 2019; 84: 5987
  • 2 Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011

    • For reviews on asymmetric hydroboration, see:
    • 3a Crudden CM, Edwards D. Eur. J. Org. Chem. 2003; 4695
    • 3b Carroll A.-M, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 3c Thomas SP, Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1896

      For selected examples of asymmetric hydroboration, see for Rh:
    • 4a Hayashi T, Matsumoto Y, Ito Y. J. Am. Chem. Soc. 1989; 111: 3426
    • 4b Crudden CM, Hleba YB, Chen AC. J. Am. Chem. Soc. 2004; 126: 9200
    • 4c Hu N, Zhao G, Zhang Y, Liu X, Li G, Tang W. J. Am. Chem. Soc. 2015; 137: 6746
    • 4d Chakrabarty S, Takacs JM. J. Am. Chem. Soc. 2017; 139: 6066

    • For Cu:
    • 4e Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
    • 4f Jang WJ, Song SM, Moon JH, Lee JY, Yun J. J. Am. Chem. Soc. 2017; 139: 13660
    • 4g Corberan R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079

    • For Co:
    • 4h Zhang L, Zuo Z, Wan X, Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
    • 4i Chen X, Cheng Z, Lu Z. ACS Catal. 2019; 9: 4025
    • 4j Yu S, Wu C, Ge S. J. Am. Chem. Soc. 2017; 139: 6526
    • 4k Chen X, Cheng Z, Guo J, Lu Z. Nat. Commun. 2018; 9: 3939

      For examples of Cu-catalyzed asymmetric formal hydroboration using B2Pin2 and alcohol, see:
    • 5a Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
    • 5b Corberan R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
    • 5c Sasaki Y, Zhong C, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 1226
    • 5d Parra A, Amenos L, Guisan-Ceinos M, Lopez A, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2014; 136: 15833
    • 5e Chen L, Shen J.-J, Gao Q, Xu S. Chem. Sci. 2018; 9: 5855

      For selected examples of Cu-catalyzed asymmetric 1,4- or 1,6-borylation, see:
    • 6a Chen I.-H, Yin L, Itano W, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 11664
    • 6b Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2008; 47: 145
    • 6c Luo Y, Roy ID, Madec AG. E, Lam HW. Angew. Chem. Int. Ed. 2014; 53: 4186
    • 6d Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
  • 7 Xi Y, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 6703
    • 8a Coombs JR, Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
    • 8b Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
    • 9a Cherian AE, Lobkovsky EB, Coates GW. Chem. Commun. 2003; 2566
    • 9b Cherian AE, Domski GJ, Rose JM, Lobkovsky EB, Coates GW. Org. Lett. 2005; 7: 5135
    • 10a Wang F, Liu L.-J, Wang W, Li S, Shi M. Coord. Chem. Rev. 2012; 256: 804
    • 10b Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
    • 11a Albright A, Gawley RE. J. Am. Chem. Soc. 2011; 133: 19680
    • 11b Albright A, Eddings D, Black R, Welch CJ, Gerasimchuk NN, Gawley RE. J. Org. Chem. 2011; 76: 7341
    • 11c Spahn E, Albright A, Shevlin M, Pauli L, Pfaltz A, Gawley RE. J. Org. Chem. 2013; 78: 2731
  • 12 Cai Y, Yang X.-T, Zhang S.-Q, Li F, Li Y.-Q, Ruan L.-X, Hong X, Shi S.-L. Angew. Chem. Int. Ed. 2018; 57: 1376

    • Other works:
    • 13a Cai Y, Zhang J.-W, Li F, Liu J.-M, Shi S.-L. ACS Catal. 2019; 9: 1
    • 13b Zhang W.-B, Yang X.-T, Ma J.-B, Su Z.-M, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 5628
    • 13c Shen D, Xu Y, Shi S.-L. J. Am. Chem. Soc. 2019; 141: 14938
    • 13d Cai Y, Ye X, Liu S, Shi S.-L. Angew. Chem. Int. Ed. 2019; 58: 13433
    • 13e Shen D, Zhang W.-B, Li Z, Shi S.-L, Xu Y. Adv. Synth. Catal. 2020; 362: 1125

    • For a concomitant development of ligands, see:
    • 13f Diesel J, Finogenova AM, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489
    • 14a Wang Z.-C, Shen D, Gao J, Jia X, Xu Y, Shi S.-L. Chem. Commun. 2019; 55: 8848
    • 14b Wang Z.-C, Wang M, Gao J, Shi S.-L, Xu Y. Org. Chem. Front. 2019; 6: 2949
    • 14c Li F, Bai X, Cai Y, Li H, Zhang S.-Q, Liu F.-H, Hong X, Xu Y, Shi S.-L. Org. Process Res. Dev. 2019; 23: 1703

      For relevant reports during our research or after our contributions, see:
    • 15a Smith JR, Collins BS. L, Hesse MJ, Graham MA, Myers EL, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 9148
    • 15b Iwamoto H, Imamoto T, Ito H. Nat. Commun. 2018; 9: 2290
    • 16a Sadhu KM, Matteson DS. Organometallics 1985; 4: 1687
    • 16b Sonawane RP, Jheengut V, Rabalakos C, Larouche-Gauthier R, Scott HK, Aggarwal VK. Angew. Chem. Int. Ed. 2011; 50: 3760
    • 16c Llaveria J, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 10958
    • 17a Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L. Eur. J. Inorg. Chem. 2009; 13: 1759
    • 17b Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat. Chem. 2019; 11: 827