Synlett 2021; 32(03): 304-308
DOI: 10.1055/a-1277-3995
letter

Sulfonated Tetraphenylethylene-Based Hypercrosslinked Polymer as a Heterogeneous Catalyst for the Synthesis of Symmetrical Triarylmethanes via a Dual C–C Bond-Cleaving Path

Gitumoni Kalita
,
Namrata Deka
,
Dipankar Paul
,
Loknath Thapa
,
Gitish K. Dutta
,
Department of Chemistry, National Institute of Technology Meghalaya, Bijni Complex, Laitumkhrah, Shillong 793003, Meghalaya, India
› Author Affiliations
The Science and Engineering Research Board (SERB, Grants SB/FT/CS-075/2014 and SB/FT/CS-115/2014) is gratefully acknowledged for financial support to G.K.D. and P.N.C. We also thank NIT Meghalaya for financial support to G.K., N.D., and D.P. SAIF, NEHU.


Abstract

A sulfonic acid functionalized tetraphenylethylene-based hypercrosslinked polymer (THP-SO3H) with a well-developed porous network and accessible sulfonic acid sites was synthesized and characterized by different analytical techniques. The catalytic prowess of the synthesized material THP-SO3H was investigated in a challenging dual C–C bond-breaking reaction for the synthesis of symmetrical triarylmethanes (TRAMs) in high yield. The scope of the developed metal-free method was also explored with a wide variety of substrates. The organocatalyst can be easily recovered by filtration and reused up to five consecutive cycles without substantial loss in its catalytic efficacy.

Supporting Information



Publication History

Received: 12 July 2020

Accepted after revision: 01 October 2020

Accepted Manuscript online:
01 October 2020

Article published online:
27 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Guillerm V, Weseliński ŁJ, Alkordi M, Mohideen MI. H, Belmabkhout Y, Cairns AJ, Eddaoudi M. Chem. Commun. 2014; 50: 1937
    • 1b Hao S, Liu Y, Shang C, Liang Z, Yu J. Polym. Chem. 2017; 8: 1833
    • 1c Dawson R, Cooper AI, Adams DJ. Polym. Int. 2013; 62: 345
  • 2 Zhang Y, Riduan SN. Chem. Soc. Rev. 2012; 41: 2083
  • 3 Ahmed DS, El-Hiti GA, Yousif E, Ali AA, Hameed AS. J. Polym. Res. 2018; 25: 75
  • 4 Huang J, Turner SR. Polym. Rev. 2018; 58: 1
  • 5 Davies IW, Matty L, Hughes DL, Reider PJ. J. Am. Chem. Soc. 2001; 123: 10139
  • 6 Bhunia S, Banerjee B, Bhaumik A. Chem. Commun. 2015; 51: 5020
  • 7 Kundu SK, Singuru R, Hayashi T, Hijikata Y, Irle S, Mondal J. ChemistrySelect 2017; 2: 4705
  • 8 Du M, Agrawal AM, Chakraborty S, Garibay SJ, Limvorapitux R, Choi B, Madrahimov ST, Nguyen ST. ACS Sustain. Chem. Eng. 2019; 7: 8126
    • 9a Yao X, Li CJ. J. Org. Chem. 2005; 70: 5752
    • 9b Li H, Li W, Liu W, He Z, Li Z. Angew. Chem. Int. Ed. 2011; 50: 2975
    • 9c Mahoney SJ, Lou T, Bondarenko G, Fillion E. Org. Lett. 2012; 14: 3474
    • 9d Armstrong EL, Grover HK, Kerr MA. J. Org. Chem. 2013; 78: 10534
    • 9e Yang Y, Ni F, Shu WM, Wu AX. Chem. Eur. J. 2014; 20: 11776
    • 9f Yao Q, Kong L, Wang M, Yuan Y, Sun R, Li Y. Org. Lett. 2018; 20: 1744
    • 9g Yao Q, Kong L, Zhang F, Tao X, Li Y. Adv. Synth. Catal. 2017; 359: 3079
    • 9h Cheng X, Zhou Y, Zhnag F, Zhu K, Liu Y, Li Y. Chem. Eur. J. 2016; 22: 12655
    • 9i Zhou Y, Tao X, Yao Q, Zhao Y, Li Y. Chem. Eur. J. 2016; 22: 17936
  • 10 Paul D, Khatua S, Chatterjee PN. New J. Chem. 2019; 43: 10056
    • 11a Esquivias J, Gomez Arrayas R, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 629
    • 11b Mondal S, Panda G. RSC Adv. 2014; 4: 28317
    • 11c Yue C, Na F, Fang X, Cao Y, Antilla JC. Angew. Chem. Int. Ed. 2018; 57: 11004
    • 11d Zhang Z, Wang H, Qiu N, Kong Y, Zeng W, Zhang Y, Zhao J. J. Org. Chem. 2018; 83: 8710
  • 12 Lee J. -SM, Briggs ME, Hasell T, Copper AI. Adv. Mater. 2016; 28: 9804
    • 13a Nambo M, Crudden CM. ACS Catal. 2015; 5: 4734
    • 13b Praveen PJ, Parameswaran PS, Majik MS. Synthesis 2015; 47: 1827
    • 13c Shiri M, Zolfigol MA, Kruger HG, Tanbakouchian Z. Chem. Rev. 2010; 110: 2250
  • 14 Zeng JH, Wang YF, Gou SQ, Zhang LP, Chen Y, Jiang JX, Shi F. ACS Appl. Mater. Interfaces 2017; 9: 34783
  • 15 The following unsymmetrical TRAM (via only Csp3–Csp3 bond cleavage) was not isolated in the reaction (Figure 3).
  • 16 Luo Y. -R, Kerr J. In CRC Handbook of Chemistry and Physics. 93rd ed. . Haynes WM. CRC Press; Boca Raton: 2012: 89
    • 17a Thirupathi P, Soo Kim S. J. Org. Chem. 2010; 75: 5240
    • 17b Castellani CB, Perotti A, Scrivanti M, Vidari G. Tetrahedron 2000; 56: 8161
  • 18 Typical Procedure for the Synthesis of 3aA 25 mL round-bottomed flask equipped with a magnetic bar and water condenser were charged with 1a (1.0 mmol), 2a (3.0 mmol), DCE (2.0 mL), and THP-SO3H (96 mg) in an air atmosphere. The flask was placed in a constant temperature oil bath at 80 °C, and the progress of the reaction was monitored by TLC. After 30 min, the mixture was filtered to separate the catalyst and washed twice with DCE (2 × 5 mL). Then the filtrate was removed under reduced pressure, and the crude product was purified by dry column vacuum chromatography (silica gel G, petroleum ether 60–80 °C/EtOAc) to give a yellow oily liquid; yield 94%.1H NMR (400 MHz, CDCl3): δ = 2.158 (s, 6 H), 5.256 (s, 1 H), 5.788 (d, J = 3.2 Hz, 4 H), 7.159–7.243 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 13.65, 45.12, 106.08, 108.19, 126.97, 128.40, 128.44, 140.00, 151.46, 152.85 ppm.