Klin Monbl Augenheilkd 2020; 237(02): 140-142
DOI: 10.1055/a-0977-3383
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Potenzielle Bedeutung der DARC-Technik für die klinische Neuroprotektion – eine Übersicht

Potential Impact of DARC Technology in Neuroprotective Therapies
Milena Pahlitzsch
Augenklinik, Charité Berlin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 13. Juni 2019

akzeptiert 09. Juli 2019

Publikationsdatum:
25. Oktober 2019 (online)

Zusammenfassung

Die Möglichkeit, primäre neuroprotektive Wirkstoffe einsetzen und kontrolliert überwachen zu können, ist ein vielversprechender Ansatz für die künftige Therapiegestaltung in neurodegenerativen Erkrankungen, insbesondere im Glaukom. Bisherige medikamentöse und chirurgische Therapieansätze zielen auf die sekundäre Neuroprotektion durch Augeninnendrucksenkung ab. Bildgebende Verfahren bilden eine essenzielle Grundlage in der Diagnostik und Therapiekontrolle. Die potenzielle Bedeutung der DARC-Technologie (Detection of apoptosing retinal Cells: Visualisierung von retinalen Ganglienzellen durch fluoreszenzmarkiertes Annexin V = ANX776 mithilfe der cSLO-Technologie) im klinischen Alltag liegt in der leichten Umsetzbarkeit. Das notwendige HRT-Gerät steht in vielen großen Augenzentren zur Verfügung und die Untersuchung mit i. v. Gabe des fluoreszierenden Markers ähnelt dem Ablauf einer konventionellen Fluoreszenzangiografie. Eine Limitation stellt vor allem die individuell stark schwankende physiologische Apoptose der humanen retinalen Ganglienzellen dar, die es vor Einsatz im klinischen Alltag in einem Normkollektiv zu standardisieren gilt.

Abstract

The ability to use and control primary neuroprotective agents is a promising approach for future treatment designs in neurodegenerative diseases, particularly in glaucoma. Previous drug and surgical approaches aim to prevent secondary neuroprotection by reducing intraocular pressure. Imaging procedures play a fundamental role in diagnostics and therapy monitoring. The potential importance of DARC technology (= detection of apoptotic retinal cells: visualisation of retinal cells by fluorescence-labeled annexin V = ANX776 using the cSLO technology) in everyday clinical practice lies in its ease of implementation. The necessary HRT is available in many ophthalmology centres. The use of a fluorescent marker is similar to that of conventional fluorescein angiography. The most important limitation is the individually fluctuating physiological apoptosis of the human retinal ganglion cells, which has to be standardised before this method can be used in everyday clinical practice.

 
  • Literatur

  • 1 Tian K, Shibata-Germanos S, Pahlitzsch M. et al. Current perspective of neuroprotection and glaucoma. Clin Ophthalmol 2015; 9: 2109-2118
  • 2 Davis BM, Crawley L, Pahlitzsch M. et al. Glaucoma: the retina and beyond. Acta Neuropathol 2016; 132: 807-826
  • 3 Massey SC. Functional Anatomy of the mammalian Retina. In: Ryan SJ, Hinton DR, Schachat AP, Wilkinson CP. eds. Retina. 4th ed.. Philadelphia: Elsevier; 2006: 43-82
  • 4 Jakobs TC, Libby RT, Ben Y. et al. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 2005; 171: 313-325
  • 5 Garcia-Valenzuela E, Shareef S, Walsh J. et al. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res 1995; 61: 33-44
  • 6 Quigley HA, Nickells RW, Kerrigan LA. et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36: 774-786
  • 7 Balendra SI, Normando EM, Bloom PA. et al. Advances in retinal ganglion cell imaging. Eye (Lond) 2015; 29: 1260-1269
  • 8 Domdei N, Reiniger JL, Pfau M. et al. [Histology of the living eye: noninvasive microscopic structure and functional analysis of the retina with adaptive optics]. Ophthalmologe 2017; 114: 206-214
  • 9 Danias J, Shen F, Goldblum D. et al. Cytoarchitecture of the retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 2002; 43: 587-594
  • 10 Kerrison JB, Duh EJ, Yu Y. et al. A system for inducible gene expression in retinal ganglion cells. Invest Ophthalmol Vis Sci 2005; 46: 2932-2939
  • 11 Leung CKS, Lindsey JD, Crowston JG. et al. In vivo imaging of murine retinal ganglion cells. J Neurosci Methods 2008; 168: 475-478
  • 12 Dezawa M, Takano M, Negishi H. et al. Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 2002; 33: 1-6
  • 13 Qiu X, Johnson JR, Wilson BS. et al. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe. PLoS One 2014; 9: e88855
  • 14 Cordeiro MF, Guo L, Luong V. et al. Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A 2004; 101: 13352-13356
  • 15 Cordeiro MF, Normando EM, Cardoso MJ. et al. Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain 2017; 140: 1757-1767
  • 16 Davis BM, Pahlitzsch M, Guo L. et al. Topical curcumin nanocarriers are neuroprotective in eye disease. Sci Rep 2018; 8: 11066
  • 17 Davis BM, Tian K, Pahlitzsch M. et al. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 2017; 36: 114-123
  • 18 Park HL, Kim JH, Park CK. Different contributions of autophagy to retinal ganglion cell death in the diabetic and glaucomatous retinas. Sci Rep 2018; 8: 13321
  • 19 Guo L, Pahlitzsch M, Javaid F, Cordeiro MF. Retinal Neurodegeneration in Alzheimerʼs Disease. In: Atta-ur-Rahman, . ed. Frontiers in Clinical Drug Research-Alzheimer Disorders. Volume 6. Sharjah, United Arab Emirates: Bentham eBooks, Bentham Science Publishers; 2017: 56-86
  • 20 Coxon KM, Pahlitzsch M, Davis BM, Duggan J, Guo L, Cordeiro MF. Retinal Ganglion Cell Apoptosis and Neuroprotection. In: Dartt DA, Besharse JC, Dana R. eds. Encyclopedia of the Eye. 2nd ed.. ed. Amsterdam: Elsevier; 2017: 62-72