Abstract
The Baylis-Hillman reaction was greatly accelerated by use of octanol as an additive.
Under the octanol-accelerated Baylis-Hillman conditions, unactivated aldehydes such
as aliphatic aldehydes and aromatic aldehydes with electron-withdrawing substituents
were readily converted into the desired products in good to high yields.
Key words
Baylis-Hillman reaction - octanol - additive - rate acceleration - aliphatic aldehydes
References and Notes
<A NAME="RU12606ST-1A">1a </A>
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RU12606ST-1B">1b </A>
Ciganek E.
Org. React.
1997,
51:
201
<A NAME="RU12606ST-1C">1c </A>
Langer P.
Angew. Chem. Int. Ed.
2000,
39:
3049
<A NAME="RU12606ST-1D">1d </A>
Basavaiah D.
Rao AJ.
Satyanayana T.
Chem. Rev.
2003,
103:
811
<A NAME="RU12606ST-2A">2a </A>
Kataoka T.
Kinoshita H.
Kinoshita S.
Iwamura T.
Watanabe S.
Angew. Chem. Int. Ed.
2000,
39:
2358
<A NAME="RU12606ST-2B">2b </A>
Shi M.
Jiang J.-K.
Feng YS.
Org. Lett.
2000,
2:
2397
<A NAME="RU12606ST-2C">2c </A>
Shi M.
Jiang JK.
Tetrahedron
2000,
56:
4793
<A NAME="RU12606ST-2D">2d </A>
Li G.
Wei HX.
Gao JJ.
Caputo TD.
Tetrahedron Lett.
2000,
41:
1
<A NAME="RU12606ST-2E">2e </A>
Shi M.
Feng YS.
J. Org. Chem.
2001,
66:
406
<A NAME="RU12606ST-2F">2f </A>
Shi M.
Jiang J.-K.
Cui S.-C.
Tetrahedron
2001,
57:
7343
<A NAME="RU12606ST-2G">2g </A>
Patra A.
Batra S.
Joshi BS.
Roy R.
Kundu B.
Bhaduri AP.
J. Org. Chem.
2002,
67:
5783
<A NAME="RU12606ST-2H">2h </A>
Basavaiah D.
Sreenivasulu B.
Rao AJ.
J. Org. Chem.
2003,
68:
5983
<A NAME="RU12606ST-2I">2i </A>
Pei W.
Wei H.
Li G.
Chem. Commun.
2002,
1856
<A NAME="RU12606ST-2J">2j </A>
Pei W.
Wei H.
Li G.
Chem. Commun.
2002,
2412
<A NAME="RU12606ST-2K">2k </A>
Kinoshita H.
Kinoshita S.
Munechika Y.
Iwamura T.
Watanabe S.
Kataoka T.
Eur. J. Org. Chem.
2003,
4852
<A NAME="RU12606ST-2L">2l </A>
Kinoshita H.
Osamura T.
Kinoshita S.
Iwamura T.
Watanabe S.
Kataoka T.
Tanabe G.
Muraoka O.
J. Org. Chem.
2003,
68:
7532
<A NAME="RU12606ST-3">3 </A>
Kundu MK.
Mukherjee SB.
Balu N.
Padmakumar R.
Bhat SV.
Synlett
1994,
444
<A NAME="RU12606ST-4A">4a </A>
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
<A NAME="RU12606ST-4B">4b </A>
Basavaiah D.
Dharma Rao P.
Suguna Hyma R.
Tetrahedron
1996,
52:
8001
<A NAME="RU12606ST-4C">4c </A>
Ciganek E. In Organic Reactions
Vol. 51:
Paquette LA.
Wiley;
New York:
1997.
p.201
<A NAME="RU12606ST-5A">5a </A>
Ameer F.
Drewes SE.
Freese S.
Kaye PT.
Synth. Commun.
1988,
18:
495
<A NAME="RU12606ST-5B">5b </A>
Drewes SE.
Freese S.
Emslie ND.
Roos GHP.
Synth. Commun.
1988,
18:
1565
<A NAME="RU12606ST-5C">5c </A>
Basavaiah D.
Sarma PKS.
Synth. Commun.
1990,
20:
1611
<A NAME="RU12606ST-5D">5d </A>
Bailey M.
Marko IE.
Ollis WD.
Rasmussen PR.
Tetrahedron Lett.
1990,
31:
4509
<A NAME="RU12606ST-6">6 </A>
Auge J.
Lubin N.
Lubineau A.
Tetrahedron Lett.
1994,
35:
7947
<A NAME="RU12606ST-7A">7a </A>
Almeida WP.
Coelho F.
Tetrahedron Lett.
1998,
39:
8609
<A NAME="RU12606ST-7B">7b </A>
Coelho F.
Almeida WP.
Veronese D.
Mateus CR.
Silva Lopes EC.
Rossi RC.
Silveira GPC.
Pavam CH.
Tetrahedron
2002,
58:
7437
<A NAME="RU12606ST-8A">8a </A>
Hill JS.
Isaacs NS.
Tetrahedron Lett.
1986,
27:
5007
<A NAME="RU12606ST-8B">8b </A>
Hill JS.
Isaacs NS.
J. Chem. Res., Synop.
1988,
330
<A NAME="RU12606ST-8C">8c </A>
Schuurman RJW.
v. d. Linden A.
Grimbergen RPF.
Nolte RJM.
Scheeren HW.
Tetrahedron
1996,
52:
8307
<A NAME="RU12606ST-9">9 </A>
Shi M.
Liu Y.-H.
Org. Biomol. Chem.
2006,
4:
1468
<A NAME="RU12606ST-10">10 </A>
Aggarwal VK.
Fulford SY.
Lloyd-Jones GC.
Angew. Chem. Int. Ed.
2005,
44:
1706
<A NAME="RU12606ST-11">11 </A>
Spectroscopic Data for Compound 4.
IR (neat): 3415, 1665, 1635, 1088 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 1.32 (d, J = 6.5 Hz, 3 H), 2.36 (s, 3 H), 3.31 (br s, 1 H), 4.66 (br s, 1 H), 6.08 (s, 1 H),
6.11 (s, 1 H). 13 C NMR (100 MHz, CDCl3 ): δ = 200.19, 151.09, 124.27, 65.89, 25.90, 21.76. HRMS (ESI): m /z calcd for C6 H10 O2 [M + H]: 114.0681; found: 114.0685.
Spectroscopic Data for Compound 6.
1 H NMR (400 MHz, CDCl3 ): δ = 6.04 (s, 1 H), 5.85 (s, 1 H), 2.61-2.57 (m, 1 H), 2.55-2.50 (m, 1 H), 2.34
(s, 3 H), 2.13 (s, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 207.59, 199.24, 147.52, 126.01, 42.20, 29.47, 25.61, 25.05.
<A NAME="RU12606ST-12">12 </A>
MacCallum JL.
Tieleman DP.
J. Am. Chem. Soc.
2002,
124:
15085