Abstract
The palladium-catalyzed cross-coupling reactions of acid chlorides with arylboronic
acids in the presence of copper(I) thiophene-2-carboxylate (CuTC) as an activator
under strictly non-basic and mild reaction conditions afford the unsymmetrical ketones
in moderate to excellent yields. A wide range of substrates bearing an electron-donating
or an electron-withdrawing substituent on the aromatic ring is compatible.
Key words
palladium - cross-coupling reaction - boronic acid - copper - ketones
References
<A NAME="RU19305ST-1">1</A> Review:
Dieter RK.
Tetrahedron
1999,
55:
4177
<A NAME="RU19305ST-2">2</A>
O’Neill BT. In
Comprehensive Organic Synthesis
Vol. 1:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.397-458
<A NAME="RU19305ST-3A">3a</A>
Miyaura N.
Yamada K.
Suzuki A.
Tetrahedron Lett.
1979,
20:
3437
For reviews on the Suzuki-Miyaura coupling, see:
<A NAME="RU19305ST-3B">3b</A>
Suzuki A.
Acc. Chem. Res.
1982,
15:
178
<A NAME="RU19305ST-3C">3c</A>
Suzuki A.
Pure Appl. Chem.
1994,
66:
213
<A NAME="RU19305ST-3D">3d</A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RU19305ST-3E">3e</A>
Miyaura N.
J. Organomet. Chem.
2002,
653:
54
<A NAME="RU19305ST-3F">3f</A>
Suzuki A.
J. Organomet. Chem.
2002,
653:
83
<A NAME="RU19305ST-3G">3g</A>
Kotha S.
Lahiri K.
Kashinath D.
Tetrahedron
2002,
58:
9633
<A NAME="RU19305ST-3H">3h</A>
Miyaura N.
Top. Curr. Chem.
2002,
219:
1
<A NAME="RU19305ST-4">4</A>
Ishiyama T.
Miyaura N.
Suzuki A.
Bull. Chem. Soc. Jpn.
1991,
64:
1999
For recent reviews on cross-coupling, see:
<A NAME="RU19305ST-5A">5a</A>
Tsuji J.
Palladium Reagents and Catalysts
Wiley;
Chichester U.K.:
1995.
p.290-422
<A NAME="RU19305ST-5B">5b</A>
Metal-catalyzed Cross-coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
<A NAME="RU19305ST-5C">5c</A>
Hassan J.
Sevignon M.
Gozzi C.
Schulz E.
Lemaire M.
Chem. Rev.
2002,
102:
1359
<A NAME="RU19305ST-6">6</A>
Zapf A.
Angew. Chem. Int. Ed.
2003,
42:
5394 ; and references cited therein
<A NAME="RU19305ST-7A">7a</A>
Gooßen LJ.
Ghosh K.
Angew. Chem. Int. Ed.
2001,
40:
3458
<A NAME="RU19305ST-7B">7b</A>
Gooßen LJ.
Ghosh K.
Chem. Commun.
2001,
20:
2084
<A NAME="RU19305ST-7C">7c</A>
Gooßen LJ.
Winkel L.
Dohring A.
Ghosh K.
Paetzold J.
Synlett
2002,
1237
<A NAME="RU19305ST-7D">7d</A>
Gooßen LJ.
Ghosh K.
Eur. J. Org. Chem.
2002,
3254
<A NAME="RU19305ST-8A">8a</A>
Kakino R.
Narahashi H.
Shimizu I.
Yamamoto A.
Chem. Lett.
2001,
12:
1242
<A NAME="RU19305ST-8B">8b</A>
Kakino R.
Narahashi H.
Shimizu I.
Yamamoto A.
Bull. Chem. Soc. Jpn.
2002,
75:
1333
<A NAME="RU19305ST-9A">9a</A>
Kakino R.
Shimizu I.
Yamamoto A.
Bull. Chem. Soc. Jpn.
2001,
74:
371
<A NAME="RU19305ST-9B">9b</A>
Kakino R.
Yasumi S.
Shimizu I.
Yamamoto A.
Bull. Chem. Soc. Jpn.
2002,
75:
137
<A NAME="RU19305ST-10">10</A>
Tatamidani H.
Kakiuchi F.
Chatani N.
Org. Lett.
2004,
6:
3597
<A NAME="RU19305ST-11">11</A>
Zeysing B.
Gosch C.
Terfort A.
Org. Lett.
2000,
2:
1843
<A NAME="RU19305ST-12A">12a</A>
Savarin C.
Srogl J.
Liebeskind LS.
Org. Lett.
2000,
2:
3229
<A NAME="RU19305ST-12B">12b</A>
Liebeskind LS.
Srogl J.
J. Am. Chem. Soc.
2000,
122:
11260
<A NAME="RU19305ST-12C">12c</A>
Yu Y.
Liebeskind LS.
J. Org. Chem.
2004,
69:
3554
<A NAME="RU19305ST-13A">13a</A>
Cho CS.
Itotani K.
Uemura S.
J. Organomet. Chem.
1993,
443:
253
<A NAME="RU19305ST-13B">13b</A>
Kabalka GW.
Malladi RR.
Tejedor D.
Kelley S.
Tetrahedron Lett.
2000,
41:
999
<A NAME="RU19305ST-13C">13c</A>
Wang J.-X.
Wei B.
Hu Y.
Liu Z.
Yang Y.
Synth. Commun.
2001,
31:
3885
<A NAME="RU19305ST-14A">14a</A>
Haddach M.
McCarthy JR.
Tetrahedron Lett.
1999,
40:
3109
<A NAME="RU19305ST-14B">14b</A>
Bumagin NA.
Korolev DN.
Tetrahedron Lett.
1999,
40:
3057
<A NAME="RU19305ST-14C">14c</A>
Chen H.
Deng M.-Z.
Org. Lett.
2000,
2:
1649
<A NAME="RU19305ST-14D">14d</A>
Urawa Y.
Ogura K.
Tetrahedron Lett.
2003,
44:
271
<A NAME="RU19305ST-14E">14e</A>
Urawa Y.
Nishiura K.
Souda S.
Ogura K.
Synthesis
2003,
2882
<A NAME="RU19305ST-15">15</A>
Zhang S.
Zhang D.
Liebeskind LS.
J. Org. Chem.
1997,
62:
2312
<A NAME="RU19305ST-16">16</A>
Yamashita H.
Kobayashi T.
Sakakura T.
Tanaka M.
J. Organomet. Chem.
1988,
356:
125
<A NAME="RU19305ST-17A">17a</A>
Brumbaugh JS.
Whittle RR.
Parvez M.
Sen A.
Organometallics
1990,
9:
1735
<A NAME="RU19305ST-17B">17b</A>
Brumbaugh JS.
Sen A.
J. Am. Chem. Soc.
1988,
110:
803
<A NAME="RU19305ST-18">18</A>
Hirabayashi K.
Mori A.
Kawashima J.
Suguro M.
Nishihara Y.
Hiyama T.
J. Org. Chem.
2000,
65:
5342
<A NAME="RU19305ST-19">19</A>
Typical Procedure for the Cross-Coupling Reactions of Acid Chlorides 1 with Boronic
Acids 2.
To phenylboronic acid (1a, 244 mg, 2 mmol), CuTC (191 mg, 1 mmol), Pd(dba)2 (29 mg, 0.05 mmol), and PPh3 (26.2 mg, 0.1 mmol), were added dry Et2O (30 mL) and benzoyl chloride (2a, 116 µL, 1 mmol) at r.t. The reddish brown suspension was stirred for 1 h at r.t.
and monitored by GC and TLC. After completion of the reaction, the reaction mixture
was passed briefly through a Celite pad. Further, the pad was washed with Et2O (2 × 10 mL). The combined organics were concentrated with a rotary evaporator to
give a viscous oil or solid. The residue was purified by flash column chromatography
on silica gel (hexane-EtOAc = 9:1, R
f
= 0.47), compound 3a (142 mg, 0.78 mmol, 78%) was obtained as a white solid. 1H NMR (300 MHz, CDCl3): δ = 7.46-7.51 (m, 4 H), 7.56-7.62 (m, 2 H), 7.79-7.83 (m, 4 H). 13C{1H} NMR (75 MHz, CDCl3): δ = 128.1, 129.9, 132.3, 137.4, 196.5.