References
<A NAME="RU18605ST-1A">1a</A>
Heathcock CH.
Norman MH.
Uehling DE.
J. Am. Chem. Soc.
1985,
107:
2797
<A NAME="RU18605ST-1B">1b</A>
Oare DA.
Heathcock CH.
J. Org. Chem.
1990,
55:
157
<A NAME="RU18605ST-2A">2a</A>
Otera J.
Fujita Y.
Fukuzumi S.
Tetrahedron
1996,
52:
9409
<A NAME="RU18605ST-2B">2b</A>
Fujita Y.
Otera J.
Fukuzumi S.
Tetrahedron
1996,
52:
9319
<A NAME="RU18605ST-3A">3a</A>
Mukaiyama T.
Tamura M.
Kobayashi S.
Chem. Lett.
1986,
1817
<A NAME="RU18605ST-3B">3b</A>
Miura K.
Nakagawa T.
Hosomi A.
Synlett
2003,
2068
<A NAME="RU18605ST-4">4</A>
Yura T.
Iwasawa N.
Mukaiyama T.
Chem. Lett.
1988,
1021
For 2-(trimethylsilyloxy)furans as nucleophiles, see:
<A NAME="RU18605ST-5A">5a</A>
Kitajima H.
Ito K.
Katsuki T.
Tetrahedron
1997,
53:
17015
<A NAME="RU18605ST-5B">5b</A>
Brown SP.
Goodwin NC.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
1192
<A NAME="RU18605ST-6">6</A>
Evans DA.
Scheidt KA.
Johnston JN.
Willis MC.
J. Am. Chem. Soc.
2001,
123:
4480
<A NAME="RU18605ST-7A">7a</A>
Harada T.
Iwai H.
Takatsuki H.
Fujita K.
Kubo M.
Oku A.
Org. Lett.
2001,
3:
2101
<A NAME="RU18605ST-7B">7b</A>
Wang X.
Harada T.
Iwai H.
Oku A.
Chirality
2003,
15:
28
<A NAME="RU18605ST-7C">7c</A>
Wang X.
Adachi S.
Iwai H.
Takatsuki K.
Fujita M.
Kubo M.
Oku A.
Harada T.
J. Org. Chem.
2003,
68:
10046
<A NAME="RU18605ST-7D">7d</A>
Harada T.
Adachi S.
Wang X.
Org. Lett.
2004,
6:
4877
<A NAME="RU18605ST-7E">7e</A>
Harada T.
Yamamoto Y.
Kusukawa T.
Chem. Commun.
2005,
859
<A NAME="RU18605ST-8A">8a</A>
Carreira EM.
Singer RA.
Tetrahedron Lett.
1994,
35:
4323
<A NAME="RU18605ST-8B">8b</A>
Carreira EM.
Singer RA.
Lee W.
J. Am. Chem. Soc.
1994,
116:
8837
<A NAME="RU18605ST-8C">8c</A>
Hollis TK.
Bosnich B.
J. Am. Chem. Soc.
1995,
117:
4570
<A NAME="RU18605ST-9">9</A>
In this reaction, a racemic enolsilane, EtO2CCH(Me)CH(Ph)CH=(OTBS)Me, was obtained as a major product in 49% yield.
<A NAME="RU18605ST-10">10</A>
Reaction of 3a with Me2C=C(OTMS)OEt under similar conditions gave the corresponding Michael adducts in only
6% ee (60% yield). These results suggest that the extent of the Si
+-catalyzed pathway depends significantly on the structure of the nucleophiles.
<A NAME="RU18605ST-11">11</A>
Typical experimental procedure (Table 1, entry 8). To a solution of O-(4-biphenoyl)-N-tosyl-(l)-allo-threonine
[7c]
(136 mg, 0.30 mmol) in CH2Cl2 (3 mL) under an argon atmosphere at r.t. was added dichlorophenylborane (39 µL, 0.30
mmol). After being stirred for 30 min, the mixture was concentrated in vacuo. To a
solution of the resulting OXB 1b, silyl ketene acetal (E)-4b (523 mg, 3.0 mmol), tert-butyl methyl ether (0.48 mL, 4.0 mmol) in CH2Cl2 (2 mL) at
-78 °C were added a CH2Cl2 (2 mL) solution of 3a (146 mg, 1.0 mmol) and 2,6-diisopropylphenol (535 mg, 3.0 mmol) over 6 h by syringe
pump. After the completion of the addition, the mixture was quenched by the addition
of a sat. aq soln of NaHCO3 and filtered. The filtrate was extracted three times with hexane, dried (MgSO4), and concentrated in vacuo. The residue was dissolved in 1 N HCl (2 mL) and THF
(10 mL) and the resulting solution was stirred at r.t. for 30 min. The mixture was
poured into aq NaHCO3 and extracted three times with Et2O. The organic layers were dried (MgSO4) and concentrated in vacuo. Purification of the residue by flash chromatography (SiO2, 4-20% EtOAc in hexane) gave 158 mg (64%) of adduct syn-5a (syn/anti = 16:1, 86% ee): 1H NMR (500 MHz, CDCl3): δ = 0.94 (3 H, d, J = 7.0 Hz), 1.27 (3 H, t, J = 7.1 Hz), 1.98 (3 H, s), 2.65 (1 H, qd, J = 7.0, 9.9 Hz), 2.75 (1 H, dd, J = 4.8, 16.2 Hz), 2.85 (1 H, dd, J = 9.6, 16.2 Hz), 3.38 (1 H, dt, J = 4.8, 9.7 Hz), 4.15 (2 H, q, J = 7.1 Hz), 7.16-7.30 (5 H, m) [minor anti isomer resonated at δ = 1.15 (3 H, d, J = 7.0 Hz), 1.05 (3 H, t, J = 7.1 Hz), 3.94 (2 H, m)]; 13C NMR (125.8 MHz, CDCl3): δ = 14.2, 15.8, 30.3, 44.1, 45.5, 48.4, 60.5, 126.9, 128.1, 128.6, 141.4, 175.6,
206.7. Anal. Calcd for C15H20O3: C, 72.55; H, 8.12. Found: C, 72.69; H, 8.34. HPLC, Daicel Chiralpak AD-H, 1.0 mL/min,
0.7% 2-PrOH in hexane (S) t
R 26.8 min, (R) t
R 19.9 min.
<A NAME="RU18605ST-12">12</A>
The low diastereoselectivity observed in the reaction using B-methyl OXB 1f (Table
[1]
, entry 10) might support this rationale.