Abstract
A series of 9-(hydroxy)alkyl xanthenes 5 was prepared in good yields via: (a) addition of 9-lithioxanthene to functionalized
acetaldehydes, or, via a new method, (b) addition of carbanions to xanthene-9-carbaldehyde.
A practical and efficient synthesis was found for the latter. Under acidic catalysis,
the majority of the addition products underwent Wagner-Meerwein rearrangement to give
either the corresponding, 10-substituted dibenz[b ,f ]oxepin 6 or the xanthenylid-9-ene β-elimination product 7 . The first Wagner-Meerwein rearrangement of a homobenzylic cyanohydrin is reported.
The dibenz[b,f ]oxepins are potential precursors of neuroactive substances. To rationalize product
distribution, and probe the scope of the new rearrangement, ab initio quantum mechanical
calculations have been carried out on products and transition states in selected cases.
Key words
Wagner-Meerwein rearrangement - dibenz[b,f ]oxepin - 9-hydroxyalkyl-xanthene - dehydration - β-elimination - transition state
stability
References <A NAME="RM01105SS-1">1 </A>
Current address: Amgen Inc., One Amgen Center Drive, P. O. Box, Thousand Oaks, CA
91320-1799, USA.
<A NAME="RM01105SS-2">2 </A>
Burke ER.
Kholodilov NG.
Ann. Neurol.
1998,
44:
126
<A NAME="RM01105SS-3A">3a </A>
Zimmermann K.
Waldmeier PC.
Tatton WG.
Pure Appl. Chem.
1999,
71:
2039
<A NAME="RM01105SS-3B">3b </A>
Mück-eler D.
Pivac N.
IDrugs
2000,
3:
530
<A NAME="RM01105SS-3C">3c </A>
Cloos PAC,
Jensen FR,
Boissy P, and
Stahlhut M. inventors; WO 2004039773, A20513.
<A NAME="RM01105SS-4A">4a </A>
Waldmeier PC.
Boulton AA.
Cools AR.
Kato AC.
Tatton WG.
Adv. Res. Neurodegen.
2000,
8:
197
<A NAME="RM01105SS-4B">4b </A>
Sagot Y.
Toni N.
Perrelet D.
Lurot S.
King B.
Rixner H.
Mattenberger L.
Waldmeier PC.
Kato AC.
Br. J. Pharmacol.
2000,
131:
721
<A NAME="RM01105SS-4C">4c </A>
LeWitt PA.
Neurology
2004,
63:
S23
<A NAME="RM01105SS-5A">5a </A>
Olivera R.
SanMartin R.
Churruca F.
Dominguez E.
J. Org. Chem.
2002,
67:
7215
<A NAME="RM01105SS-5B">5b </A>
SanMartin R.
Olivera R.
Churruca F.
Tellitu I.
Dominguez E.
Trends Heterocycl. Chem.
2003,
9:
259
<A NAME="RM01105SS-6">6 </A>
Bischoff S. In
Novel Antipsychotic Drugs
Meltzer;
New York:
1992.
p.117-134
<A NAME="RM01105SS-7A">7a </A>
Mercep M,
Mesic M, and
Pesic D. inventors; PCT Int. Appl., WO 2003099822, 20031204.
<A NAME="RM01105SS-7B">7b </A>
Kiyama R.
Honma T.
Hayashi K.
Ogawa M.
Hara M.
Fujimoto M.
Fujishita T.
J. Med. Chem.
1995,
38:
2728
<A NAME="RM01105SS-7C">7c </A>
Lambrou GN,
Latour E, and
Waldmeier P. inventors; WO 2004066993, A10812.
<A NAME="RM01105SS-8A">8a </A>
Zimmermann K.
Roggo S.
Kragten E.
Fürst P.
Waldmeier P.
Bioorg. Med. Chem. Lett.
1998,
8:
1195
<A NAME="RM01105SS-8B">8b </A>
Kanno S, and
Okita T. inventors; JP 2000044568, A20215.
<A NAME="RM01105SS-8C">8c </A>
Arnold LA.
Wenchen L.
Guy RK.
Org. Lett.
2004,
6:
3005
<A NAME="RM01105SS-9">9 </A> Tosylate 8 :
Anet FAL.
Bavin PMG.
Can. J. Chem.
1957,
35:
1081 . In this work, sulfonate esters of the parent alcohols 5a -m were not investigated as starting materials for the Wagner-Meerwein rearrangement
<A NAME="RM01105SS-10">10 </A> Other authors reproduced this reaction in boiling benzene and found 85% yield
of dibenz[b ,f ]oxepin:
Hess BA.
Bailey AS.
Bartusek B.
Boekelheide V.
J. Am. Chem. Soc.
1969,
91:
1665
<A NAME="RM01105SS-11A">11a </A>
Smith Kline & French patent; US 3100207, 1963 ; claims a more lengthy approach to 10-aminomethyldibenz[b ,f ]oxe-pins via 9-hydroxymethyl-9-aminoalkylxanthenes.
<A NAME="RM01105SS-11B">11b </A> Bergmann and Rabinovitz claimed the rearrangement of 9-(α-hydroxybenzyl)xanthene
(5d ) to 10-phenyldibenz-[b,f ]oxepin but proof of structure was tentative (only IR, mp given):
Bergmann D.
Rabinovitz M.
Isr. J. Chem.
1963,
1:
125
In our hands, the substrate 5d did not rearrange, but rather gave the β-elimination product (7d , Table 1), in accordance with the theoretical calculations (vide supra, Table 3).
<A NAME="RM01105SS-11C">11c </A> Xanthene pKHA [THF] = 31.4:
Fraser RR.
Mansour TS.
Savard S.
J. Org. Chem.
1985,
50:
3232
<A NAME="RM01105SS-11D">11d </A> The 9-lithiation of xanthene was originally reported by Nakai et al.:
Nakai R.
Sugii M.
Tomono H.
Bull. Inst. Chem. Res., Kyoto Univ.
1955,
33:
211
It was also reported by Mahesh et al.:
<A NAME="RM01105SS-11E">11e </A>
Mahesh VB.
Seshadri TR.
J. Sci. Ind. Res., Sect. B
1955,
14:
608
<A NAME="RM01105SS-12">12 </A> Only one other, more cumbersome method of preparation for this aldehyde (careful
DIBAL-reduction of xanthene-9-carbonyl chloride) has been reported:
Rochlin E.
Rappoport Z.
J. Am. Chem. Soc.
1992,
114:
230. In our hands, this procedure gave mostly xanthone after aqueous workup and silica
gel chromatography of the crude product
<A NAME="RM01105SS-13">13 </A>
Typical procedure (5k ): To a solution of xanthene 3 (3.64 g, 20 mmol) in anhyd THF (60 mL) under Ar at -65 °C was added n -BuLi (1.1 equiv, 8.1 mL, 2.7 M solution in n -heptane). After stirring at -65 °C for 30 min, a fine red suspension formed. Ethyl
formate (1.77 g, 24 mmol) in THF (12 mL) was added dropwise at -65 °C. Stirring at
-60 °C to -70 °C for 3 h resulted in a clear, orange solution. After HPLC had indicated
complete conversion of 3 , glacial AcOH (1.32 g, 22 mmol) was added slowly, such that the temperature did not
exceed -60 °C. To the resulting yellowish solution of 4 Huenig’s base (3.1 g, 24 mmol), followed by nitromethane (1.46 g, 24 mmol) were added.
The turbid mixture was warmed to r.t. overnight. After quenching with aq AcOH and
adjusting the pH to neutral, extraction with CH2 Cl2 and purification of the crude product by silica gel chromatography afforded 5k (4.63 g, 85%) as a slightly yellowish solid. Similarly were prepared: 5i [KCN (1.0 equiv), -40 °C to r.t., no base, 91% yield), and 5j [ HPO(OEt)2 (1.1 equiv), -40 °C to r.t., Huenig’s base (1.2 equiv), 91% yield].
<A NAME="RM01105SS-14">14 </A>
For substrates obtained using method B , it is best to avoid workup and isolation (see ref. 12), and instead use the in situ-prepared
aldehyde(4 ) solution (see ref. 13) directly in the next step.
<A NAME="RM01105SS-15">15 </A>
Reichardt C.
Solvents and Solvent Effects in Organic Chemistry
VCH-Wiley;
Weinheim, N.Y.:
1988.
p.140ff
<A NAME="RM01105SS-16">16 </A>
Jaguar 5.5
Schrödinger, LLC;
Portland, OR:
1991-2003.
<A NAME="RM01105SS-17">17 </A>
Szabo A.
Ostlund NS.
Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory
MacMillan;
New York:
1982.
<A NAME="RM01105SS-18">18 </A>
Koch W.
Holthausen MC.
A Chemist’s Guide to Density Functional Theory
John Wiley and Sons;
New York:
2001.
<A NAME="RM01105SS-19">19 </A>
Pachuau Z.
Lyngdoh D.
J. Chem. Sci.
2004,
116:
83
The putative spirocyclopropyl cyclohexadienyl transition state dates back to the pioneering
work of Winstein et al., where this transition state had been invoked to rationalize
rates of solvolysis and alkyl group migration in substituted, primary phenethyl tosylates
and related systems; compare:
<A NAME="RM01105SS-20A">20a </A>
Winstein S.
Lindegren CR.
Marshall H.
Ingraham LL.
J. Am. Chem. Soc.
1953,
75:
147
<A NAME="RM01105SS-20B">20b </A>
Denney DB.
Goldstein B.
J. Am. Chem. Soc.
1957,
79:
4948
<A NAME="RM01105SS-20C">20c </A>
Winstein S.
Fainberg AH.
J. Am. Chem. Soc.
1958,
80:
459
<A NAME="RM01105SS-20D">20d </A>
Raber DJ.
Harris JM.
Schleyer PVR.
J. Am. Chem. Soc.
1971,
93:
4829
<A NAME="RM01105SS-20E">20e </A>
Loupy A.
Seyden-Penne J.
Tetrahedron
1973,
29:
1015