RSS-Feed abonnieren
DOI: 10.1055/s-2002-33522
Tandem Radical Cyclisation and Translocation Approaches to Biologically Important Mitomycin Ring Systems
Publikationsverlauf
Publikationsdatum:
17. September 2002 (online)

Abstract
New free-radical cyclisation and translocation approaches to the tricyclic mitomycin ring system have been developed. These convergent approaches involve either a tandem 5-endo/5-exo radical cyclisation or alternatively, a 1,6-hydrogen-atom transfer followed by 5-exo cyclisation sequence.
Key words
cyclisations - mitomycin - radical reactions - tandem reactions - tin
-
1a
Webb JS.Cosulich DB.Mowat JH.Patrick JB.Broschard RW.Meyer WE.Williams RP.Wolf CF.Fulmor W.Pidacks C.Lancaster JE. J. Am. Chem. Soc. 1962, 84: 3185 -
1b
Webb JS.Cosulich DB.Mowat JH.Patrick JB.Broschard RW.Meyer WE.Williams RP.Wolf CF.Fulmor W.Pidacks C.Lancaster JE. J. Am. Chem. Soc. 1962, 84: 3187 -
2a
Nakatsubo K.Fukuyama T.Cocuzza AJ.Kishi Y. J. Am. Chem. Soc. 1977, 99: 8115 -
2b
Fukuyama T.Nakatsubo K.Cocuzza AJ.Kishi Y. Tetrahedron Lett. 1977, 18: 4295 -
2c
Kishi Y. J. Nat. Prod. 1979, 42: 549 -
2d
Fukuyama T.Yang L. J. Am. Chem. Soc. 1987, 109: 7881 -
2e
Fukuyama T.Yang L. J. Am. Chem. Soc. 1989, 111: 8303 -
2f
Benbow JW.Schulte GK.Danishefsky SJ. Angew. Chem., Int. Ed. Engl. 1992, 31: 915 -
2g
Benbow JW.McClure KF.Danishefsky SJ. J. Am. Chem. Soc. 1993, 115: 12305 -
2h
Kasai M.Kono M. Synlett 1992, 778 - For recent approaches see for example:
-
3a
Coleman RS.Chen W. Org. Lett. 2001, 3: 1141 -
3b
Jones GB.Guzel M.Mathews JE. Tetrahedron Lett. 2000, 41: 1123 -
3c
Ziegler FE.Berlin MY. Tetrahedron Lett. 1998, 39: 2455 -
3d
Ziegler FE.Berlin MY.Lee K.Looker AR. Org. Lett. 2000, 2: 3619 -
3e
Dobbs AP.Jones K.Veal KT. Tetrahedron 1998, 54: 2149 -
3f
Brunton SA.Jones K. J. Chem. Soc., Perkin Trans. 1 2000, 763 -
3g
Jones K.Storey JMD. J. Chem. Soc., Perkin Trans. 1 2000, 769 -
4a
He Q.-Y.Maryendu H.Tomasz M. J. Am. Chem. Soc. 1994, 116: 9349 -
4b
Kohn H.Wang S. Tetrahedron Lett. 1996, 37: 2337 -
4c
Edstrom ED.Yu T. Tetrahedron 1997, 53: 4549 - 5
McCarroll AJ.Walton JC. J. Chem. Soc., Perkin Trans. 1 2001, 3215 -
6a
Baker SR.Parsons AF.Pons J.-F.Wilson M. Tetrahedron Lett. 1998, 39: 7197 -
6b
Baker SR.Burton KI.Parsons AF.Pons J.-F.Wilson M. J. Chem. Soc., Perkin Trans. 1 1999, 427 -
9a
Kocián O.Ferles M. Collect. Czech. Chem. Commun. 1978, 43: 1413 -
9b
Speckamp WN.de Boer JJJ. Recl. Trav. Chim. Pays-Bas 1983, 102: 410 - 10
Moehrle H.Mehrens J. Z. Naturforsch., B: Chem. Soc. 1998, 53: 1369 - 11
Easton CJ.Pitt MJ.Ward CM. Tetrahedron 1995, 51: 12781 -
12a
Robertson J.Pillai J.Lush RK. Chem. Soc. Rev. 2001, 30: 94 -
12b
Bogen S.Fensterbank L.Malacria M. J. Org. Chem. 1999, 64: 819 -
12c
Wessig P.Schwarz J.Lindermann U.Holthausen MC. Synthesis 2001, 1258 -
12d
Leardini R.McNab H.Minozzi M.Nanni D.Reed D.Wright AG. J. Chem. Soc., Perkin Trans. 1 2001, 2704 - 13
Wadsworth WS.Emmons WD. J. Am. Chem. Soc. 1961, 83: 1733 - 14 For a related 5,5,6-tricycle see:
Wee AGH.Liu B.Zhang L. J. Org. Chem. 1992, 57: 4404
References
All new compounds exhibited satisfactory spectral and analytical (high-resolution mass) data.
8Tricycle 12: 1H NMR (270 MHz, CDCl3): δ = 7.80 (1 H, d, J = 8 Hz, H-1 aromatic), 7.53-6.97 (8 H, m, aromatic), 4.26 (2 H, q, J = 7 Hz, CO2CH 2), 3.78 (1 H, dd, J = 11 and 4.5 Hz, CHCH 2CO2), 2.75 (1 H, dd, J = 17.5 and 11 Hz, CHCO2), 2.62-2.15 (5 H, m, CHCO2, NCOCH 2 and NCOCH2CH 2) and 1.32 (3 H, t, J = 7 Hz, CO2CH2CH 3). MS (CI, NH3): m/z (%) = 336 (100) [M + H+]. Found (CI, NH3): 336.1598 [M + H+]. C21H21NO3 requires for [M + H+], 336.1600. Tricycle 13: 1H NMR (270 MHz, CDCl3): δ = 9.02 (1 H, d, J = 8.2 Hz, H-1 aromatic), 7.46-6.99 (8 H, m, aromatic), 4.36-4.26 (2 H, m, CO2CH 2), 3.03 (1 H, dd, J = 13.3 and 4.1 Hz, CHCHCO2), 2.89-2.30 (6 H, m, CHCHCO2, NCOCH 2 and NCOCH2CH 2) and 1.36 (3 H, t, J = 7 Hz, CO2CH2CH 3). MS (CI, NH3): m/z (%) = 336 (100) [M + H+]. Found (CI, NH3): [M + H+] 336.1599. C21H21NO3 requires for [M + H+] 336.1600.
155,5,6-Tricycle 21.
Diastereoisomer 1: 1H NMR (500 MHz, CDCl3): δ = 7.63
(1 H, d, J = 7.8
Hz, H-1 aromatic), 7.27-7.18 (2 H, m, aromatic), 7.05-7.01
(1 H, m, aromatic), 4.81-4.75 (1 H, m, NCH),
4.17 (2 H, q, J = 7.1
Hz, CO2CH
2), 3.74-3.69
(1 H, m, CHCH2CO2),
2.90-2.82 (1 H, m, NCOCH), 2.63-2.57
(2 H, m, CHCO2 and NCOCH), 2.43 (1 H, dd, J = 16.8
and 5.7 Hz, CHCO2), 2.19-2.14
(1 H, m, NCOCH2CH), 2.00-1.91
(1 H, m, NCOCH2CH) and 1.26
(3
H, t, J = 7
Hz, CO2CH2CH
3). 13C
NMR (75 MHz, CDCl3): δ = 171.6, 170.7
(NCO and CO2),
138.0, 137.0 (2 × C=CH aromatic),
128.4, 125.2, 124.3, 114.5 (4 × C=CH aromatic), 65.0 (NCH),
60.9 (CO2
CH2),
38.3 (CHCH2CO2),
36.4, 36.2 (CHCH2CO2 and
NCOCH2), 23.3 (CH2
CH2CH2), 14.2 (CO2CH2
CH3). MS (CI, NH3): m/z (%) = 260
(100) [M + H+]. Found
(CI, NH3): [M + H+] 260.1290.
C15H17NO3 requires for [M + H+] 260.1287.
Diastereoisomer 2: 1H NMR (500 MHz, CDCl3): δ = 7.61
(1 H, d, J = 7.8
Hz, H-1 aromatic), 7.41-7.04 (3 H, m, aromatic), 4.34-4.30
(1 H, m, NCH), 4.25-4.16 (2 H, m, CO2CH2),
3.60-3.55 (1 H, m, CHCH2CO2), 3.03
(1 H, dd, J = 16.4
and 4.4 Hz, CHCO2), 2.86-2.78 (1 H, m, NCOCH),
2.61-2.51 (3 H, m, CHCO2, NCOCH and NCOCH2CH),
2.15-2.06 (1 H, m, NCOCH2CH) and 1.30 (3 H,
t, J = 7 Hz,
CO2CH2CH3). 13C NMR
(75 MHz, CDCl3): δ = 171.8, 171.6 (NCO and CO2), 139.1,
136.3, 128.4, 124.4, 123.9, 115.0 (C=CH aromatic), 69.8 (NCH),
60.9 (CO2
CH2),
44.8 (CHCH2CO2),
37.8, 36.1 (CHCH2CO2 and
NCOCH2), 29.2 (CH2
CH2CH2), 14.4 (CO2CH2
CH3). MS (CI, NH3): m/z (%) = 260
(100) [M + H+]. Found
(CI, NH3): [M + H+] 260.1288.
C15H17NO3 requires for [M + H+] 260.1287.
5,6,6-Tricycle 22. 1H
NMR (270 MHz, CDCl3): δ = 8.70 (1 H,
d, J = 9.1
Hz, H-1 aromatic), 7.27-7.04 (3 H, m, aromatic), 4.26 (2
H, q, J = 7.2 Hz,
CO2CH
2), 4.07-3.97
(1 H, m, NCH), 3.14-3.09 (2
H, m, CHCHCO2 and CH2CHCO2), 2.74-2.33
(4 H, m, NCOCH
2, CHCHCO2 and NCOCH2CH), 1.93-1.77 (1 H, m, NCOCH2CH) and 1.32 (3 H, t, J = 7.2
Hz, CO2CH2CH
3). 13C
NMR (75 MHz, CDCl3): δ = 173.6,
172.6 (NCO and CO2),
136.0, 128.9, 127.4, 124.0, 123.9, 119.1 (C=CH aromatic), 61.2 (CO2
CH2), 58.9 (NCH),
45.4 (CHCO2), 31.9, 31.5 (NCOCH2 and CH2CHCO2),
24.0 (CH2
CH2CH2), 14.3
(CH2
CH3). Found
(CI, NH3): [M + H+] 260.1285. C15H17NO3 requires
for [M + H+] 260.1287.
The low yield (30%) for the N-acylation/cyclisation reactions (to form the pyrrolidinone ring) was due to the formation of an alkyne in 55% yield, which resulted from dehydrobromination of vinyl bromide 24 by ethoxide.