Abstract
An attempt to access in an enantioselective fashion, a highly substituted cyclohexane
as required for the northeastern sector of okilactomycin is described. The application
of Oppolzer’s sultam chemistry, involving in particular an optically and chemically
efficient asymmetric conjugate addition of a functionalized allylic Grignard reagent
in tandem with ring closing metathesis forms the basis of a direct, highly stereocontrolled
route to the cyclohexenylmethanol 10 . Ensuing Sharpless epoxidation very efficiently leads to construction of epoxide
11 . This intermediate and its benzyl ether were found to undergo regiocontrolled oxirane
ring cleavage with cyanide and chloride ions. However, this precedence was not matched
when alternative carbon nucleophiles (particularly allyl) were brought into play.
Under no circumstances was a desired product detected. The all-equatorial array of
substituents on the cyclohexane is likely responsible for the lack of reactivity toward
organometallic reagents.
Key words
metathesis - sultams - cyanation - carbocupration - epoxide - asymmetric conjugate
addition
References and Notes
<A NAME="RM05701SS-1">1 </A>
Paquette LA.
Boulet S.
Synthesis
2002,
888
<A NAME="RM05701SS-2">2 </A>
Oppolzer W.
Poli G.
Kingma AJ.
Starkemann C.
Bernardinelli G.
Helv. Chim. Acta
1987,
70:
2201
<A NAME="RM05701SS-3">3 </A>
Oppolzer W.
Kingma AJ.
Helv. Chim. Acta
1989,
72:
1337
<A NAME="RM05701SS-4A">4a </A>
Lipshutz BH.
Ellsworth EL.
Dimock SH.
Smith RAJ.
J. Am. Chem. Soc.
1990,
112:
4404
<A NAME="RM05701SS-4B">4b </A>
Lipshutz BH.
Hackmann C.
J. Org. Chem.
1994,
59:
7437
<A NAME="RM05701SS-5">5 </A>
Oppolzer W.
Mills RJ.
Pachinger W.
Stevenson T.
Helv. Chim. Acta
1986,
69:
1542
<A NAME="RM05701SS-6A">6a </A>
Oppolzer W.
Lienard P.
Helv. Chim. Acta
1992,
75:
2572
<A NAME="RM05701SS-6B">6b </A>
Toyota S.
Akinaga T.
Kojima H.
Aki M.
Oki M.
J. Am. Chem. Soc.
1996,
118:
11460
<A NAME="RM05701SS-7">7 </A>
Boulet, S. L.; unpublished findings.
<A NAME="RM05701SS-8">8 </A>
Rossi R.
Carpita A.
Chini M.
Tetrahedron
1985,
41:
627
<A NAME="RM05701SS-9">9 </A>
Oppolzer W.
Moretti R.
Thomi S.
Tetrahedron Lett.
1989,
30:
5603
<A NAME="RM05701SS-10A">10a </A>
Fu GC.
Grubbs RH.
J. Am. Chem. Soc.
1992,
114:
5426
<A NAME="RM05701SS-10B">10b </A>
Fu GC.
Grubbs RH.
J. Am. Chem. Soc.
1992,
114:
7324
<A NAME="RM05701SS-10C">10c </A>
Fu GC.
Grubbs RH.
J. Am. Chem. Soc.
1993,
115:
3800
<A NAME="RM05701SS-10D">10d </A>
Fu GC.
Nguyen ST.
Grubbs RH.
J. Am. Chem. Soc.
1993,
115:
9856
<A NAME="RM05701SS-10E">10e </A>
Nguyen ST.
Grubbs RH.
Ziller JW.
J. Am. Chem. Soc.
1993,
115:
9858
<A NAME="RM05701SS-10F">10f </A>
Kirkland TA.
Grubbs RH.
J. Org. Chem.
1997,
62:
7310
<A NAME="RM05701SS-11A">11a </A>
Hoye TR.
Zhao H.
Org. Lett.
1999,
1:
1123
<A NAME="RM05701SS-11B">11b </A>
Paquette LA.
Efremov I.
J. Am. Chem. Soc.
2001,
123:
4492
<A NAME="RM05701SS-12">12 </A>
Ackermann L.
El Tom D.
Fürstner A.
Tetrahedron
2000,
56:
2195
<A NAME="RM05701SS-13A">13a </A>
Gao Y.
Klunder JM.
Hanson RM.
Masamune H.
Ko SY.
Sharpless KB.
J. Am. Chem. Soc.
1987,
109:
5765
<A NAME="RM05701SS-13B">13b </A>
Crimmins MT.
Lever JG.
Tetrahedron Lett.
1986,
27:
291
<A NAME="RM05701SS-13C">13c </A>
Naruta Y.
Nishigaichi Y.
Maruyama K.
Tetrahedron Lett.
1989,
30:
3319
<A NAME="RM05701SS-13D">13d </A>
Tanner D.
He HM.
Tetrahedron
1989,
45:
4309
<A NAME="RM05701SS-13E">13e </A>
Hamon DPG.
Massy-Westropp RA.
Newton JL.
Tetrahedron: Asymmetry
1990,
1:
771
<A NAME="RM05701SS-14">14 </A>
Tsunoda T.
Suzuki M.
Noyori R.
Tetrahedron Lett.
1980,
21:
1557
<A NAME="RM05701SS-15">15 </A>
Caron M.
Sharpless KB.
J. Org. Chem.
1985,
50:
1560
<A NAME="RM05701SS-16">16 </A>
Reetz MT.
Jung A.
Bölm C.
Tetrahedron
1988,
44:
3889
<A NAME="RM05701SS-17">17 </A>
Lin H.-S.
Paquette LA.
Synth. Commun.
1994,
24:
2503
<A NAME="RM05701SS-18A">18a </A>
Van der Louw J.
Van der Baan JL.
De Kanter FJJ.
Bickelhaupt F.
Klumpp GW.
Tetrahedron
1992,
48:
6087
<A NAME="RM05701SS-18B">18b </A>
Van der Louw J.
Van der Baan JL.
Out GJJ.
De Kanter FJJ.
Bickelhaupt F.
Klumpp GW.
Tetrahedron
1992,
48:
9901