Subscribe to RSS
DOI: 10.1055/s-2002-19759
Short and Versatile Two-Carbon Ring Expansion Reactions by Thermo-Isomerization: Novel Straightforward Synthesis of (±)-Muscone, Nor- and Homomuscones, and Further Macrocyclic Ketones
Publication History
Publication Date:
02 February 2007 (online)
Abstract
Thermo-isomerization of 1-vinyl substituted medium- and large-ring cycloalkanol derivatives in a flow reactor system at temperatures of 600 °C to about 650 °C leads directly to the ring-expanded macrocyclic ketones. Alkyl substituents at the vinylic moiety are transferred locospecifically to the ring-expanded ketone as corresponding α-, and β-substituents, respectively. This novel thermal 1,3-C shift reaction therefore provides a new access to short syntheses of many alkyl-substituted macrocyclic ketone derivatives [e.g. (±)-muscone and analogues] in a systematic manner.
Key words
ring expansions - macrocyclic ketones - dynamic gas phase thermo-isomerization - two- carbon ring insertion reactions - (±)-muscone syntheses
- 1 
             
            
Nagel M.Hansen H.-J.Fráter G. Synlett 2002, 2✗5 - 4a 
             
            
Kaiser R.Lamparsky D. Helv. Chim. Acta 1978, 61: 2671 - 4b 
             
            
Müller E.Bauer M. Liebigs Ann. Chem. 1962, 654: 92 - 4c 
             
            
Saunier YM.Danion-Bougot R.Danion D.Carrié R. J. Chem. Res. (S) 1978, 436 - 4d 
             
            
McMurry JE.Miller DD. J. Am. Chem. Soc. 1983, 105: 1660 - 4e 
             
            
Satoh T.Itoh N.Gengyo K.Takada S.Asakawa N.Yamani Y.Yamakawa K. Tetrahedron 1994, 50: 11839 - 4f 
             
            
Clyne DS.Weiler L. Tetrahedron 1999, 55: 13659 - Isolated from the so-called Galbanum oleo-gum-resin of Ferula galbaniflua and Ferula rubicaulis: See ref. 4a and references therein. Macrolide 8a is described as distinctly musky, and 8b as woody, balsamic and slightly musky. For the synthesis of the two different smelling enantiomers of 8b, see:
 - 5a 
             
            
Kraft P.Tochtermann W. Liebigs Ann. Org. Bioorg. Chem. 1995, 1409 - 5b 
             
            
Kraft P.Tochtermann W. Liebigs Ann. Org. Bioorg. Chem. 1994, 1161 - 5c 
             
            
Noda Y.Kashin H. Heterocycles 1998, 48: 5 - 5d 
             
            
Bestmann HJ.Kellermann W. Synthesis 1994, 1257 - For further syntheses of 8a and 8b:
 - 6a  
            
See ref. [4e]
 - 6b 
             
            
Hinkamp L.Schäfer HJ.Wippich B.Luftmann H. Liebigs Ann. Chem. 1992, 559 - 6c 
             
            
Donaldson WA.Taylor BS. Tetrahedron Lett. 1985, 26: 4163 - 6d 
             
            
Sims RJ.Tischler SA.Weiler L. Tetrahedron Lett. 1983, 24: 253 - 6e 
             
            
Wassermann HH.Gambale RJ.Pulwer MJ. Tetrahedron 1981, 37: 4059 - 6f 
             
            
Voss G.Gerlach H. Helv. Chim. Acta 1983, 66: 2294 - 7 
             
            
Taguchi H.Yamamoto H.Nozaki H. Tetrahedron Lett. 1976, 2617 - Selected characteristic spectroscopic data of
 - 8a  
            
3a: 1H NMR (300 MHz, CDCl3): 5.94 and 5.74 [br s, H2-C(1)], 1.86 [br s, Me-C(2)], 0.87 [t-type m, H3C(ω)]. 13C NMR (75 MHz, CDCl3): 202.3 [s, C(3)], 144.6 [s, C(2)], 124.1 [t, C(1)], 17.7 [q, Me-C(2)], 13.5 [q, C(ω)].
 - 8b  
            
5a: 1H NMR (300 MHz, CDCl3): 2.52 [t-type m, 2 H, H2-C(13)], 1.68-1.63 (m, 2 H), 1.54-1.49 (m, 2 H), 1.33-1.15 (m, 16 H), 1.12 [s, 6 H, Me2-C(2)]. 13C NMR (75 MHz, CDCl3): 216.0 (s), 47.84 (s), 40.83, 35.68, 26.96, 26.69, 26.63, 25.45, 25.26 (7 t), 24.70 (q, 2), 24.56, 24.48, 22.27, 21.86 (4 t).
 - 9 
             
            
Casanova J.Waegell B. Bull. Soc. Chim. Fr. 1971, 1289 - For examples of analogous one-carbon insertion reactions by a semipinacol-type [1,2]C shift induced by electrophiles (Br+, Cl+), see (Scheme 5):
 - 10a 
             
            
Julia S.Julia M.Linarès H.Blondel J.-C. Bull. Soc. Chim. Fr. 1962, 1952 - 10b 
             
            
Johnson CR.Cheer CJ.Goldsmith DJ. J. Org. Chem. 1964, 29: 3320 - 10c 
             
            
Kartashov VR.Pushkarev VP.Tishkov KN.Bodrikov IV. J. Org. Chem. USSR (Engl Transl.) 1971, 7: 1638 - 10d 
             
            
Bodrikov IV.Kartashov VR.Temnikova TI. J. Org. Chem. USSR (Engl Transl.) 1968, 4: 1286 - 10e 
             
            
Bouget H. Bull. Soc. Chim. Fr. 1965, 2089 - Examples for the synthesis of geminal α,α-dialkylated cyclic ketones by one-carbon expansion reactions:
 - 11a 
             
            
Krief A.Laboureur JL. Tetrahedron Lett. 1987, 28: 1549 - 11b 
             
            
Krief A.Laboureur JL. J. Chem. Soc., Chem. Commun. 1986, 702 -  See also: (c)  
            
Hesse M. Ring Enlargement in Organic Chemistry VCH; Weinheim, Germany: 1991. Chap. 2. p.5-37 ; and references therein - 12 For surface supported reactions on aluminium oxide see:  
            
Posner GH. Angew. Chem. 1978. 90: p.527 - For leading references see:
 - 13a 
             
            
Hesse M. Ring Enlargement in Organic Chemistry VCH; Weinheim, Germany: 1991. - 13b 
             
            
Williams AS. Synthesis 1999, 1707 - 13c 
             
            
Fráter G.Bajgrowicz JA.Kraft P. Tetrahedron 1998, 54: 7633 - 13d 
             
            
Fráter G.Lamparsky D. In Perfumes: Art, Science and TechnologyMüller PM.Lamparsky D. Elsevier; London, New York: 1991. Chap. 20. p.533-555 - 13e 
             
            
Ohloff G. Riechstoffe und Geruchssinn. Die molekulare Welt der Düfte Springer; Berlin: 1990. Chap. 9. p.195-219 - 13f 
             
            
Mookherjee BD.Wilson RA. In Fragrance Chemistry: The Science of the Sense of SmellTheimer ET. Academic Press; New York: 1982. Chap. 12. p.433-494 - 13g 
             
            
Körber A.Bauer K. In Fragrance and Flavor SubstancesCroteau R. D & PS; Pattensen, Germany: 1980. Chap. 14. p.155-166 - Syntheses of muscone (7c):
 - 14a  
            
For leading references cf. ref. [13]
 - 14b 
             
            
Munro C.Palmer K. Perfum. Flavour. 2000, 25 : May/June 1-4; and references therein - 14c 
             
            
Alexakis A.Benheim C.Fournioux X.Heuvel A.v. d. Levêque J.-M.March S.Rosset S. Synlett 1999, 11: 1811 - 14d 
             
            
Kamat VP.Hagiware H.Suzuki T.Ando M. J. Chem. Soc., Perkin Trans. 1 1998, 2253 - 14e 
             
            
Nicolaou KC.Pator J.Winssinger N.Murphy F. J. Am. Chem. Soc. 1998, 120: 5132 - 14f 
             
            
Takahashi T.Machida K.Kido Y.Nagashima K.Ebata S.Doi T. Chem. Lett. 1997, 1291 ; and references therein - 14g 
             
            
Ballini R.Marcantoni E.Petrini M. Liebigs Ann. 1995, 1381 ; and references therein - 14h 
             
            
Porter NA.Lacher B.Chang VH.Magnin DR. J. Am. Chem. Soc. 1989, 111: 8309 - 14i 
             
            
Bienz S.Hesse M. Helv. Chim. Acta 1988, 71: 1704 ; and references therein - 14j 
             
            
Bienz S.Hesse M. Helv. Chim. Acta 1987, 70: 2146 - 14k 
             
            
Karpf M.Dreiding AS. Helv. Chim. Acta 1975, 58: 2409 - Syntheses of 3-methylcyclohexadecanone (7d):
 - 15a 
             
            
Weiper-Idelmann A.a. d. Kamen M.Schäfer HJ.Gockeln M. Acta Chem. Scand. 1998, 52: 672 - 15b 
             
            
Mash EA.Gregg TM.Baron JA. J. Org. Chem. 1997, 62: 8513 - 15c 
             
            
Tanaka K.Matsui J.Somemiya K.Suzuki H. Synlett 1994, 351 - 15d 
             
            
Mookherjee BD.Trenkle RW.Patel R. J. Org. Chem. 1971, 36: 3266 - Syntheses of 3-methylcyclotetradecanone (7b):
 - 16a 
             
            
Yoshii E.Kimoto S. Chem. Pharm. Bull. 1969, 17: 629 - 16b  
            
See ref. [14j]
 - 16c  
            
See ref. [14k]
 - Syntheses of 3-methylcyclotridecanone (7a):
 - 17a 
             
            
Schulte-Elte KH.Hauser A.Ohloff G. Helv. Chim. Acta 1979, 62: 2673 - 17b  
            
cf. ref. [14k]
 - 17c 
             
            
Hiyama T.Mishima T.Kitatani K.Nozaki H. Tetrahedron Lett. 1974, 3297 - For a survey:
 - 19a 
             
            
Hesse M. Ring Enlargement in Organic Chemistry VCH; Weinheim, Germany: 1991. Chap. 2. p.5-34 ; and references therein - 19b 
             
            
Smith PAS.Baer DR. Org. React. 1960, 11: 157-188 - 19c 
             
            
Kirchhof W.Stumpf W.Franke W. Liebigs Ann. Chem. 1965, 681: 32 - 19d 
             
            
Drotloff H.Rotter H.Emeis D.Moeller M. J. Am. Chem. Soc. 1987, 7797 - 20a 
             
            
Evans DA.Carroll GL.Truesdale LK. J. Org. Chem. 1974, 39: 914 - 20b 
             
            
Vincek WC.Aldrich CS.Borchardt RT.Grunewald GL. J. Med. Chem. 1981, 24: 7 - 20c 
             
            
Choudary BM.Narender N.Bhuma V. Synth. Commun. 1995, 25: 2829 - 20d  
            
Modification of the work-up procedure: To dissolve all the aminoalcohol during the washing procedure, the white granular precipitate was digested in a glass filter with hot t-BuOMe several times and finally with one portion of hot THF.
 - 21a 
             
            
Gabel G. Bull. Soc. Chim. Fr. 1934, 1006 - 21b 
             
            
Kerwin JF.Ullyot GE.Fuson RC.Zirkle CL. J. Am. Chem. Soc. 1947, 69: 2961 - 21c 
             
            
Bellau B.Conway TT.Doyle TW.Morris L.Verbestel W. Can. J. Chem. 1975, 53: 237 - 21d 
             
            
Kitani H.Kuroda T.Moriguchi A.Ao H.Hirayama F. Bioorg. Med. Chem. Lett. 1997, 7: 515 - 21e 
             
            
Reddy LR.Reddy MA.Bhanumathi N.Rao KR. Synlett 2000, 339 - 21f 
             
            
Tiffeneau M.Weill P.Tchoubar B. C. R. Acad. Sci. 1937, 205: 54 - 21g 
             
            
Tchoubar B. Bull. Soc. Chim. Fr. 1949, 164 - 21h 
             
            
Clark RD.Caroon JM.Repke DB.Strosberg AM.Bitter SM. J. Med. Chem. 1983, 26: 855 - 21i 
             
            
Caroon JM.Clark RD.Kluge AF.Lee C.-H.Strosberg AM. J. Med. Chem. 1983, 26: 1426 - 21j 
             
            
Chen Y.-L.Chan C.-K.Chang N.-C. J. Chin. Chem. Soc. (Taipei) 1998, 45: 649 - 22a 
             
            
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1965, 87: 1353 - 22b 
             
            
Shibuya H.Tsujii S.Yamamoto Y.Miura H.Kitagawa I. Chem. Pharm. Bull. 1984, 32: 3417 - 22c 
             
            
Bouda H.Borredon ME.Delmas M.Gaset A. Synth. Commun. 1987, 17: 503 - 22d 
             
            
Blake AJ.Danks JP.Harrison A.Parsons S.Schooler P. J. Chem. Soc., Dalton Trans. 1998, 2335 - 22e 
             
            
Ng JS. Synth. Comm. 1990, 20: 1193 ; and references therein - 23 
             
            
Toda F.Kanemoto K. Heterocycles 1997, 46: 185 - The mixture of the (E/Z)-isomers 17, and 21, respectively, was found already earlier to be difficult to separate, cf. ref.14k For 21 see also:
 - 25a 
             
            
Stoll M.Rouvé A. Helv. Chim. Acta 1947, 30: 2019 - 25b 
             
            
Ito Y.Saegusa T. J. Org. Chem. 1977, 42: 2326 - 25c  
            
Ref. [17a]
 - 25d 
             
            
Flieri HG.Scholz D.Stütz A. Monatsh. Chem. 1979, 110: 245 - 25e 
             
            
Torii S.Inokuchi T.Mizuguchi K.Yamazaki M. J. Org.Chem. 1979, 44: 2303 - 25f  
            
See ref. [19c]
 - 25g 
             
            
Tsuji J.Yamada T.Kaito M.Mandai T. Bull. Chem. Soc. Jpn. 1980, 53: 1417 - 25h 
             
            
Rautenstrauch V.Snowden RL.Linder SM. Helv. Chim. Acta 1990, 73: 896 - 25i  
            
See ref. [14b]
 - 26a 
             
            
Marson Ch.Walker AJ.Pickering J.Hobson AD. J. Org. Chem. 1993, 58: 5944 - 26b 
             
            
Adam W.Richter MJ. Synthesis 1994, 176 - 26c 
             
            
Brandsma L.Verkruijsse H. Preparative Polar Organometallic Chemistry 1 Springer; Berlin/Heidelberg: 1987. p.50-51 - 27 
             
            
McMurry JE.Miller DD. J. Am. Chem. Soc. 1983, 105: 1660 - 28 
             
            
Satoh T.Masayuki I.Yamakawa K. Chem. Lett. 1987, 1949 - 29a 
             
            
Thies RW.Daruwala KP. J. Org. Chem. 1987, 52: 3798 ; and references therein - 29b 
             
            
Wilson SR.Misra RN.Georgiadis GM. J. Org. Chem. 1980, 45: 2460 
References
For a description of the thermo-izomerization procedure and the experimental setup, see ref. [1] and references therein.
3All mentioned cycloalkanols were synthesized by addition of the corresponding commercially available vinylic halides (normally the bromide) to the ketone by using a Grignard reaction. The yields could be improved significantly by pre-complexation of the ketone with CeCl3, according to the analogous procedure described in ref. 1 for the simple 1-vinylcycloalkanols. The propynyl substituted alcohol derivatives 16 and 20 were obtained in a similar manner by addition of propynyl magnesium bromide to the parent ketone. The 1-cyclohexen-1-yl-cyclododecanol 28 was obtained via addition of the lithio cyclohexenyl intermediate according to ref. [27]
18Selected characteristic data of enones 8: 1H NMR (300 MHz, CDCl3): (E)-8a: 6.84 [dq, J = 15.5, 7 Hz, H-C(2)], 6.12 [dq, J = 15.5, 1.7 Hz, H-C(3)], 1.87 (dd, J = 7, 1.5 Hz). (Z)-8a: 6.19 [m, 2 H, H-C(2,3)], 2.11 (d, J = 7 Hz). 13C NMR (75 MHz, CDCl3): 200.4 [s, C(4)], (E)-8a: 141.9 [d, C(2)], 131.9 [d, C(3)], 18.0 [q, C(1)]. (Z)-8a: 142.2 [d, C(2)], 127.6 [d, C(3)], 15.9 [q, C(1)].
24Cyclododecanone (12, 60 g, 0.33 mol) was melted by keeping it at 65-70 °C, then t-BuOH (15 mL) and trimethyl sulfoxonium iodide (117 g, 0.52 mol, 1.6 mol equiv.) were added with stirring. The resulting pulpy suspension was kept at 70 °C and potassium t-butoxide (56 g, 0.5 mol) were added in several portions. After an induction period of several minutes the insoluble precipitates slowly dissolved, due to the formation of equimolar amounts of DMSO during the spiroepoxide formation. After stirring for 1.5 h, powdered KOH (2 g) was added to the mixture. The course of the reaction was then followed by GC (conversion up to 95%). When further addition of KOH resulted in no additional epoxide formation, the mixture was allowed to cool to r.t. and water (100 mL) was added slowly with stirring. The mixture was diluted with t-BuOMe and then washed several times with water and brine. The organic layer was dried on MgSO4 and the solvent removed. After bulb-to-bulb distillation, oxirane 15 was obtained as a colorless oil (61 g, containing 5-10% 12) and was used for the transformation into 14 without further purification.