Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(11): 1447-1450
DOI: 10.1055/s-0037-1609846
DOI: 10.1055/s-0037-1609846
letter
One-Pot Selective Synthesis of Multisubstituted Quinoxalin-2(1H)-ones by a Ugi 4CR/Catalytic Aza-Wittig Sequence
Authors
We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (No. 21572075 and 21172085).
Further Information
Publication History
Received: 07.02.2018
Accepted after revision: 05 April 2018
Publication Date:
23 May 2018 (online)

Abstract
A facile, one-pot synthesis of multisubstituted quinoxalin-2(1H)-ones via a Ugi 4CR/catalytic aza-Wittig sequence has been developed. In the presence of a catalytic amount of 3-methyl-1-phenyl-2-phospholene 1-oxide, the reaction of 2-aminobenzoyl azides, aldehydes, ketoacids, and isocyanides selectively produces quinoxalin-2(1H)-ones as the sole products in high yields.
Key words
quinoxalin-2(1H)-ones - 2-aminobenzoyl azide - Ugi reaction - catalytic aza-Wittig reactionSupporting Information
- Supporting Information (PDF) (opens in new window)
1H and 13C NMR spectra of compounds 5h, 5k, and 7a–o for this article are available free of charge via the Internet at https://doi.org/10.1055/s-0037-1609846.
-
References and Notes
- 1 Isambert N. Lavilla R. Chem. Eur. J. 2008; 14: 8444
- 2a Dömling A. Chem. Rev. 2006; 106: 17
- 2b Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3169
- 2c Ugi I. Dömling A. Hörl W. Endeavour 1994; 18: 115
- 3 Zhu J. Bienayme H. Multicomponent Reactions . Wiley-VCH; Weinheim: 2005
- 4 Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
- 5 Ramon DJ. Yus M. Angew. Chem. Int. Ed. 2005; 103: 1602
- 6 Ugi I. Meyr R. Fetzer U. Steinbrückner C. Angew. Chem. 1959; 71: 386
- 7 Che C. Yang B. Lin S. J. Org. Chem. 2014; 79: 436
- 8 Zeng XH. Wang HM. Ding MW. Org. Lett. 2015; 17: 2234
- 9 Cheng GS. He X. Tian L. Li J. J. Org. Chem. 2015; 80: 11100
- 10a Palacios F. Alonso C. Aparicio D. Rubiales G. de los Santos JM. Tetrahedron 2007; 63: 523
- 10b Eguchi S. ARKIVOC 2005; (ii): 98
- 10c Loos P. Riedricha M. Arndt H.-D. Chem. Commun. 2009; 1900
- 10d Attanasi OA. Bartoccini S. Favi G. Filippone P. Perrulli FR. Santeusanio S. J. Org. Chem. 2012; 77: 9338
- 10e Molina P. Vilaplana MJ. Synthesis 1994; 1997
- 11 Marsden SP. McGonagle AE. McKeever-Abbas B. Org. Lett. 2008; 10: 2589
- 12 Yan YM. Rao Y. Ding MW. J. Org. Chem. 2016; 81: 1263
- 13a Li X. Yang KH. Li WL. Xu WF. Drugs Future 2006; 31: 979
- 13b Xu WF. Chin. J. Med. Chem. 2007; 17: 183
- 14 EI-Sabbagh OI. EI-Sadek ME. Lashine SM. Yassin SH. EI-Nabtity SM. Med. Chem. Res. 2009; 18: 782
- 15 Ajani OO. Obafemi CA. Ikpo CO. Ogunniran KO. Nwinyi OC. Chem. Heterocycl. Compd. 2009; 45: 1370
- 16 Gupta D. Ghosh NN. Chandra R. Bioorg. Med. Chem. Lett. 2005; 15: 1019
- 17 Rösner M. Billhardt-Troughton U.-M. Kirsh R. Kleim JP. Meichsner C. Riess G. Winkler I. US Patent 5723461, 1998
- 18 Carta A. Piras S. Loriga G. Mini-Rev. Med. Chem. 2006; 6: 1179
- 19a Rie UJ. Priepke HW. M. Nar H. Bioorg. Med. Chem. Lett. 2003; 13: 2297
- 19b Bekerman DG. Abasolo MI. Fernández BM. J. Heterocycl. Chem. 1992; 29: 129
- 19c Eller GA. Datterl B. Holzer W. J. Heterocycl. Chem. 2007; 44: 1139
- 20 Carta A. Sanna P. Gherardini L. Usai D. Zanetti S. Il Farmaco 2001; 56: 933
- 21 Mossetti R. Pirali T. Saggiorato D. Tron GC. Chem. Commun. 2011; 6966
- 22 Erb W. Neuville L. Zhu JP. J. Org. Chem. 2009; 74: 3109
- 23 Haridas KR. Pajalingam P. Radhakrishna G. J. Elastomers Plast. 1991; 23: 104
- 24 General procedure for the preparation of Ugi intermediates 5: A mixture of 2-aminobenzoyl azide 1 (1 mmol), aldehyde 2 (1 mmol), ketoacid 3 (1 mmol), and isocyanide 4 (1 mmol) was stirred in methanol (5 mL) at room temperature for 8–12 h, after the reaction was complete, the precipitate was filtered to give 5
- 25 Compound 5h: Yield: 90%; white solid; mp 115–117 °C; 1H NMR (CDCl3, 600 MHz): δ = 7.99–6.69 (m, 12 H, Ar-H), 6.53–6.13 (m, 1 H, NH), 6.04–5.97 (m, 1 H, CH), 2.26–2.05 (m, 3 H, CH3), 1.38–1.36 (m, 9 H, 3CH3); 13C NMR (CDCl3, 100 MHz): δ = 189.3, 170.7, 168.6, 166.1, 139.2, 134.5, 134.2, 134.1, 133.6, 133.2, 132.3, 131.3, 130.9, 129.8, 129.6, 128.6, 128.4, 128.0, 65.1, 51.5, 28.2, 20.7; IR (KBr): 2142, 1707, 1690, 1675, 1638 cm–1. Anal. Calcd for C28H26ClN5O4: C, 63.22; H, 4.93; N, 13.16; Found: C, 63.00; H, 4.98; N, 13.26
- 26 General procedure for the preparation of quinoxalin-2(1H)-ones 7: A mixture of 2-aminobenzoyl azide 1 (1 mmol), aldehyde 2 (1 mmol), ketoacid 3 (1 mmol), and isocyanide 4 (1 mmol) was stirred in methanol (5 mL) at room temperature for 8–12 h, then the solvent was removed under reduced pressure at room temperature. Toluene (5 mL) and 3-methyl-1-phenyl-2-phospholene 1-oxide (0.01 g, 0.05 mmol) were added to the reaction vessel and the reaction mixture was heated to 110 °C for 2–3 h to form quinoxalin-2(1H)-ones 7. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (ether/petroleum ether, 1:4, v/v) to give 7. Compound 7a: Yield: 75%; white solid; mp 220–223 °C. 1H NMR (CDCl3, 600 MHz): δ = 8.20–8.19 (m, 2 H, Ar-H), 7.90 (s, 1 H, Ar-H), 7.49–7.41 (m, 4 H, Ar-H), 7.31–7.21 (m, 5 H, Ar-H), 6.75 (s, 1 H, NH), 6.09 (s, 1 H, CH), 2.22 (s, 3 H, CH3), 1.30 (s, 9 H, 3CH3); 13C NMR (CDCl3, 150 MHz): δ = 166.0, 154.9, 136.9, 135.4, 134.4, 132.4, 132.3, 131.4, 131.3, 130.6, 129.5, 129.4, 129.1, 128.1, 127.7, 126.9, 117.2, 61.6, 52.0, 28.3, 19.5; MS (EI, 70 eV): m/z (%) = 459 (5) [M+], 386 (12), 360 (75), 331 (28), 104 (100). Anal. Calcd for C27H26ClN3O2: C, 70.50; H, 5.70; N, 9.14; Found: C, 70.58; H, 5.64; N, 9.20