RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217569
Synthesis of the Disubstituted Maleic Anhydride Frame Using a Novel Tandem Radical-Polar Reaction
Publikationsverlauf
Publikationsdatum:
15. Juli 2009 (online)

Abstract
An unreported 5-endo-trig atom-transfer radical cyclization of cyclic N-α-dichloroacyl-ketene-N,S-acetals, which evolves as a tandem radical-polar process, is described. The reaction, which is carried out in the presence of a Cu(I) complex catalyst (10 mol%) and an inorganic base (i.e., carbonate), can be exploited as the key step for a novel, short, and versatile synthesis of the 3,4-disubstituted maleic anhydride nucleus.
Key words
cyclizations - imides - radical reactions - sulfur - tandem reactions
- 1
Giese B.Kopping B.Göbel T.Dickhaut J.Thoma G.Kulicke KJ.Trach F. Organic Reactions Vol. 48:Paquette LA. Wiley; New York: 1996. p.301Reference Ris Wihthout Link - 2a
Baldwin JE. J. Chem. Soc., Chem. Commun. 1976, 734Reference Ris Wihthout Link - 2b
Beckwith ALJ.Easton CJ.Serelis AK. J. Chem. Soc., Chem. Commun. 1980, 482Reference Ris Wihthout Link - For reviews, see:
- 3a
Parsons AF. C. R. Acad. Sci., Ser. IIc 2001, 4: 391Reference Ris Wihthout Link - 3b
Ishibashi H.Sato T.Ikeda M. Synthesis 2002, 695Reference Ris Wihthout Link - 4a
Ishibashi H.Higuchi M.Ohba M.Ikeda M. Tetrahedron Lett. 1998, 39: 75Reference Ris Wihthout Link - 4b
Bryans JS.Chessum NEA.Parsons AF.Ghelfi F. Tetrahedron Lett. 2001, 42: 2901Reference Ris Wihthout Link - 5 For the sake of completeness the
question is debated, since recent computational studies on the cyclization
of N-vinyl-carbamoyl methyl radicals
suggest that the 5-endo mode is not only
thermodynamically favored, but also kinetically favored:
Chatgilialoglu C.Ferreri C.Guerra M.Timokhin V.Froudakis G.Gimisis T. J. Am. Chem. Soc. 2002, 124: 10765 - 6
Ishibashi H. Chem. Rec. 2006, 6: 23 - 7
Ghelfi F.Parsons AF. J. Org. Chem. 2000, 65: 6249 - 8a
Curran DP. Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.779Reference Ris Wihthout Link - 8b
Gilbert BC.Parsons AF. J. Chem. Soc., Perkin Trans. 2 2002, 367Reference Ris Wihthout Link - 8c
Majumdar KC.Basu PK.Chattopadhyay SK. Tetrahedron 2007, 63: 793Reference Ris Wihthout Link - 9
Clark AJ. Chem. Soc. Rev. 2002, 31: 1 ; besides Cu(I), Ru(II) has also been significantly employed - 10a
Lampard C.Murphy JA.Lewis N. J. Chem. Soc., Chem. Commun. 1993, 295Reference Ris Wihthout Link - 10b
Davies DT.Kapur N.Parsons AF. Tetrahedron Lett. 1999, 40: 8615Reference Ris Wihthout Link - 10c
Clark AJ.Dell CP.Ellard JM.Hunt NA.McDonagh JP. Tetrahedron Lett. 1999, 40: 8619Reference Ris Wihthout Link - The radical-polar crossover has also been proposed for Ni, Mn(III), Bu3SnH, and Ce(IV) promoted RC of enamides:
- 11a
Cassayre J.Quiclet-Sire B.Saunier J.-B.Zard SZ. Tetrahedron 1998, 54: 1029Reference Ris Wihthout Link - 11b
Davies DT.Kapur N.Parsons AF. Tetrahedron Lett. 1998, 39: 4397Reference Ris Wihthout Link - 11c
Ishibashi H.Matsukida H.Toyao A.Tamura O.Takeda Y. Synlett 2000, 1497Reference Ris Wihthout Link - 11d
Clark AJ.Dell CP.McDonagh JM.Geden J.Mawdsley P. Org. Lett. 2003, 5: 2063Reference Ris Wihthout Link - 12
Friestad GK.Wu Y. Org. Lett. 2009, 11: 819 - 13
Benedetti M.Forti L.Ghelfi F.Pagnoni UM.Ronzoni R. Tetrahedron 1997, 53: 14031 - 14a
Bellesia F.Danieli C.De Buyck L.Galeazzi R.Ghelfi F.Mucci A.Orena M.Pagnoni UM.Parsons AF.Roncaglia F. Tetrahedron 2006, 62: 746Reference Ris Wihthout Link - 14b
Ghelfi F.Pattarozzi M.Roncaglia F.Parsons AF.Felluga F.Pagnoni UM.Valentin E.Mucci A.Bellesia F. Synthesis 2008, 3131Reference Ris Wihthout Link - 15
Chen X.Zheng Y.Shen Y. Chem. Rev. 2007, 107: 1777 - 16
Ghelfi F.Bellesia F.Forti L.Ghirardini G.Grandi R.Libertini E.Montemaggi MC.Pagnoni UM.Pinetti A. Tetrahedron 1999, 55: 5839 - 17
Zhou A.Njogu MN.Pittman CU. Tetrahedron 2006, 62: 4093 - 19
Fuganti C.Gatti FG.Serra S. Tetrahedron 2007, 63: 4762 - 21a
Hajipour AR.Zarei A.Khazdooz L.Ruoho AE. Synthesis 2006, 1480Reference Ris Wihthout Link - 21b
Zolfigol MA. Tetrahedron 2001, 57: 9509Reference Ris Wihthout Link - 23 Compound 13b (0.73
mmol, 300 mg), wet SiO2 60% (w/w, 365
mg), NaNO3 (1.46 mmol, 124 mg), and silica-sulfuric acid
(1.46 mmol, 400 mg) were weighed into a vial, then CH2Cl2 (3
mL) was added. The vial was closed with a screw cap, and the mixture
was stirred at 45 ˚C for 17 h and then cooled
down to r.t. Et2O (10 mL) was added, and the suspension
was stirred at r.t. for 30 min and then filtered. The solid was
washed with Et2O (3 × 10 mL), then the combined
organic layers were concentrated under vacuum into a Schlenk tube.
Glacial AcOH (1.5 mL) and 2 M aq H2SO4 (1.5
mL) were added to the crude product, then the tube was closed with
a screw cap. The mixture was stirred at 140 ˚C
for 65 h and then cooled down to r.t. Water (15 mL) was added, and
the solution was extracted with Et2O (4 × 20 mL).
The solvent was removed under vacuum. Chromatography of the crude
product on silica, eluting with a PE-Et2O gradient
from 9:1 to 5:5, afforded 3-ethyl-2-methyl maleic anhydride (12, 61 mg, 60%). Characterizations
were in agreement with literature values:
Poigny S.Guyot M.Samadi M. J. Chem. Soc., Perkin Trans. 1 1997, 2175 - 24
Albert M.Fensterbank L.Lacôte E.Malacria M. Top. Curr. Chem. 2006, 264: 1
References and Notes
3-(2,2-Dichlorobutanoyl)-2-ethylidene-1,3-thiazolidine (5a)
Yellow
oil. R
f
= 0.64
(PE-Et2O, 1:1). ¹H NMR (200
MHz, CDCl3): δ = 1.23
(t, J = 7.1
Hz, 3 H, CH3), 1.74 (d, J = 6.8 Hz,
3 H, CH3), 2.50 (q, J = 7.1
Hz, 2 H, CH2), 3.05 (t, J = 6.2 Hz,
2 H, CH2), 4.48 (t, J = 6.2
Hz, 2 H, CH2), 6.26 (q, J = 7.1 Hz,
1 H, CH) ppm. ¹³C NMR (50 MHz, CDCl3): δ = 9.6, 15.8,
28.1, 39.4, 53.1, 87.2, 109.1, 135.0, 162.3 ppm. MS (EI, 70 eV): m/z (%) = 253
(22) [M]+, 218 (100), 190
(28). IR (film): 1670 (C=O) cm-¹.
3-(2,2-Dichlorobutanoyl)-2-ethylidene-1,3-thiazine
(5b)
Yellowish oil. R
f
= 0.56
(PE-Et2O, 1:1). ¹H NMR (400 MHz,
CDCl3): δ = 1.19
(t, J = 7.1
Hz, 3 H, CH3), 1.84 (d, J = 6.8
Hz, 3 H, CH3), 2.08 (br m, 2 H, CH2), 2.49
(q, J = 7.1 Hz,
2 H, CH2), 2.85 (br m, 2 H, CH2), 4.22 (br
m, 2 H, CH2), 6.07 (br m, 1 H, CH) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 9.7,
14.4, 26.3, 29.5, 40.1, 49.8, 85.7, 130.6, 132.2, 163.5 ppm. MS
(EI, 70 eV): m/z (%) = 267
(2) [M]+, 232 (42), 156 (96),
128 (100). IR (film): 1669 (C=O) cm-¹.
Typical Procedure
for the ATRC
Compound 5b (2
mmol, 536 mg), CuCl (10 mol%, 20 mg), and Na2CO3 (2
mmol, 212 mg) were weighed into a Schlenk tube, then dry MeCN (3
mL) and TMEDA (20 mol%, 60 µL) were added under
Ar. The mixture was stirred at 30 ˚C and after
17 h diluted with H2O and extracted with CH2Cl2 (3 × 25
mL). The combined organic layers were concentrated under vacuum.
Chromatography of the crude product on silica, eluting with a PE-Et2O
gradient from 9:1 to 4:6, afforded 1-{3-[(7-ethyl-8-methyl-6-oxo-3,4-dihydro-2H-pyrrolo[2,1-b][1,3]thiazin-6
(8aH)-yl)sulfanyl]propyl}-3-ethyl-4-methyl-1H-pyrrole-2,5-dione (13b)
as yellow oil (327 mg, 80%) and 1,1′-(disulfanediyldipropane-2,1-diyl)bis(3-ethyl-4-methyl-1H-pyrrole-2,5-dione) (14b)
as orange oil (60 mg, 14%).
Compound 13b: R
f
= 0.12
(PE-Et2O, 1:1). ¹H NMR (400 MHz,
CDCl3): δ = 0.92
(t, J = 7.6
Hz, 3 H, CH3), 0.98 (t, J = 7.6
Hz, 3 H, CH3), 1.44 (q t, J = 13.2
Hz, 3.0 Hz, 1 H, CHaxH), 1.51 (quin, J = 7.0
Hz, 2 H, CH2), 1.62-1.77 (m, 2 H, CH2),
1.78-1.90 (m, 1 H, CHeqH), 1.80 (s, 3 H, CH3),
1.88 (s, 3 H, CH3), 2.17 (q, J = 7.6
Hz, 2 H, CH2), 2.24 (q, J = 7.6 Hz,
2 H, CH2), 2.54 (br d t, J = 13.2
Hz, 1 H, CHeqH), 2.94 (t d, J = 13.2,
3.0 Hz, 1 H, CHaxH), 3.17 (t d, J = 13.2,
3.0 Hz, 1 H, CHaxH), 3.29 (t, J = 7.0
Hz, 2 H, CH2), 4.11 (br d, J = 13.2
Hz, 1 H, CHeqH) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 8.4,
10.2, 12.6, 13.1, 17.0, 26.2, 26.8, 27.7, 27.9, 35.6, 37.0, 73.8,
134.5, 136.5, 142.1, 150.1, 167.6, 171.6, 172.1 ppm. HRMS: m/z calcd for C20H28N2NaO3S2 [M + Na]+ 431.1434;
found: 431.1438. IR (film): 1685 (C=O) cm-¹.
Compound 14b: R
f
= 0.33
(PE-Et2O, 1:1). ¹H NMR (400 MHz,
CDCl3): δ = 1.12
(t, J = 7.6
Hz, 6 H, 2 CH3), 1.90-2.00 (m, 4 H, 2 CH2),
1.95 (s, 6 H, 2 CH3), 2.39 (q, J = 7.6 Hz,
4 H, 2 CH2), 2.64 (t, J = 7.0
Hz, 4 H, 2 CH2), 3.56 (t, J = 7.0
Hz, 4 H, 2 CH2) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 8.5,
12.6, 17.1, 28.3, 36.0, 36.7, 136.5, 142.2, 171.8, 172.2 ppm. HRMS: m/z calcd for C20H28N2NaO4S2 [M+Na]+:
447.1383; found: 447.1385. IR (film): 1700 (C=O) cm-¹.
All
other compounds show spectral data (¹H NMR, ¹³C NMR,
HRMS, and IR) consistent with their structures.
1-[3-({[3-(3-Ethyl-4-methyl-2,5-dioxo-2,5-dihydro-1
H
-pyrrol-1-yl)propyl]sulfonyl}sulfanyl)propyl]-3-ethyl-4-methyl-1
H
-pyrrole-2,5-dione
(17)
Yellow oil. R
f
= 0.10
(PE-Et2O, 1:1). ¹H NMR (400
MHz, CDCl3): δ = 1.11
(t, J = 7.6,
6 H, 2 CH3), 1.94 (s, 6 H,2 CH3), 2.00 (quin, J = 6.8 Hz,
2 H, CH2), 2.14 (quin, J = 7.2
Hz, 2 H, CH2), 2.38 (br q, J = 7.6
Hz, 4 H, 2 CH2), 3.07 (br t, J = 6.8
Hz, 2 H, CH2), 3.31 (br t, J = 7.2
Hz, 2 H, CH2), 3.57 (br t, J = 6.8
Hz, 2 H, CH2), 3.61 (br t, J = 7.2
Hz, 2 H, CH2) ppm. ¹³C NMR
(100 MHz, CDCl3): δ = 8.4,
12.5, 17.0, 23.4, 28.9, 33.5, 35.8, 36.1, 60.2, 136.6, 136.7, 142.28,
142.32, 171.6, 171.7, 172.0, 172.1 ppm. HRMS: m/z calcd
for C20H29N2O6S2 [M + H]+:
457.1462; found: 457.1470. IR (film): 1700 (C=O) cm-¹.