Synlett 2023; 34(12): 1317-1326
DOI: 10.1055/s-0042-1753177
account
Special Issue Honoring Masahiro Murakami’s Contributions to Science

C–C Bond Activations of Minimally Activated Cyclopropanes

Olga O. Sokolova
a   School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
,
Andrew G. Dalling
a   School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
,
John F. Bower
b   Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
› Author Affiliations
We thank the European Research Council for financial support via the EU’s Horizon 2020 Programme (ERC grant 639594 CatHet).


Abstract

Catalytic processes involving oxidative addition of a C–C bond to a transition metal allow the atom economical assembly of complex scaffolds. The focus of this Account is on C–C bond activation-based methodologies that employ minimally activated cyclopropanes.



Publication History

Received: 01 November 2022

Accepted after revision: 24 November 2022

Article published online:
21 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 C-C Bond Activation. In Topics in Current Chemistry. Dong G. Springer; Berlin: 2014
  • 2 Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
  • 3 Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
  • 4 Murakami M, Ishida N. J. Am. Chem. Soc. 2016; 138: 13759
  • 5 Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
  • 6 Chen P.-H, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017; 7: 1340
  • 7 Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
  • 8 To CT, Chan KS. Eur. J. Org. Chem. 2019; 6581
  • 9 Deng L, Dong G. Trends Chem. 2020; 2: 183
  • 10 Tipper CF. H. J. Chem. Soc. 1955; 2045
  • 11 Crabtree RH. Chem. Rev. 1985; 85: 245
  • 12 Rybtchinski B, Milstein D. Angew. Chem. Int. Ed. 1999; 38: 870
  • 13 Low JJ, Goddard WA. J. Am. Chem. Soc. 1984; 106: 8321
  • 14 Siegbahn PE. M, Blomberg MR. A. J. Am. Chem. Soc. 1992; 114: 10548
  • 15 Halpern J. Acc. Chem. Res. 1982; 15: 238
  • 16 O’Reilly ME, Dutta S, Veige AS. Chem. Rev. 2016; 116: 8105
  • 17 Walsh AD. Nature 1947; 159: 165
  • 18 Wu W, Ma B, Wu JI.-C, Schleyer P. vR, Mo Y. Chem. Eur. J. 2009; 15: 9730
  • 19 Alabugin IV, Manoharan M. J. Comput. Chem. 2007; 28: 373
  • 20 Brandi A, Cicchi S, Cordero FM, Goti A. Chem. Rev. 2014; 114: 7317
  • 21 Yu L.-Z, Chen K, Zhu Z.-Z, Shi M. Chem. Commun. 2017; 53: 5935
  • 22 Inglesby PA, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
  • 23 Ganesh V, Chandrasekaran S. Synthesis 2016; 48: 4347
  • 24 Wender PA, Takahashi H, Witulski B. J. Am. Chem. Soc. 1995; 117: 4720
  • 25 Noyori R, Odagi T, Takaya H. J. Am. Chem. Soc. 1970; 92: 5780
  • 26 Noyori R, Kumagai Y, Umeda I, Takaya H. J. Am. Chem. Soc. 1972; 94: 4018
  • 27 Delgado A, Rodríguez JR, Castedo L, Mascareñas JL. J. Am. Chem. Soc. 2003; 125: 9282
  • 28 Evans PA, Inglesby PA. J. Am. Chem. Soc. 2008; 130: 12838
  • 29 Li C, Zhang H, Feng J, Zhang Y, Wang J. Org. Lett. 2010; 12: 3082
  • 30 Matsuda T, Tsuboi T, Murakami M. J. Am. Chem. Soc. 2007; 129: 12596
  • 31 Roundhill DM, Lawson DN, Wilkinson G. J. Chem. Soc. A 1968; 845
  • 32 Powell KG, McQuillin FJ. J. Chem. Soc. D 1971; 931
  • 33 McQuillin FJ, Powell KC. J. Chem. Soc., Dalton Trans. 1972; 2129
  • 34 Bart SC, Chirik PJ. J. Am. Chem. Soc. 2003; 125: 886
  • 35 Koga Y, Narasaka K. Chem. Lett. 1999; 28: 705
  • 36 Blanco-Urgoiti J, Añorbe L, Pérez-Serrano L, Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2004; 33: 32
  • 37 Iqbal AF. M. Tetrahedron Lett. 1971; 3381
  • 38 Shaw MH, Melikhova EY, Kloer DP, Whittingham WG, Bower JF. J. Am. Chem. Soc. 2013; 135: 4992
  • 39 Shaw MH, McCreanor NG, Whittingham WG, Bower JF. J. Am. Chem. Soc. 2015; 137: 463
  • 40 Shaw MH, Whittingham WG, Bower JF. Tetrahedron 2016; 72: 2731
  • 41 Huang C.-Y, Doyle AG. J. Am. Chem. Soc. 2012; 134: 9541
  • 42 Sokolova OO, Bower JF. Angew. Chem. Int. Ed. 2022; e202205007
  • 43 Bi X, Zhang Q, Gu Z. Chin. J. Chem. 2021; 39: 1397
  • 44 Shaw MH, Croft RA, Whittingham WG, Bower JF. J. Am. Chem. Soc. 2015; 137: 8054
  • 45 Zhang Y.-L, Guo R.-T, He J.-H, Wang X.-C. Org. Lett. 2019; 21: 4239
  • 46 McCreanor NG, Stanton S, Bower JF. J. Am. Chem. Soc. 2016; 138: 11465
  • 47 Wang G.-W, Bower JF. J. Am. Chem. Soc. 2018; 140: 2743
  • 48 Boyd O, Wang G.-W, Sokolova OO, Calow AD. J, Bertrand SM, Bower JF. Angew. Chem. Int. Ed. 2019; 58: 18844
  • 49 Wang G.-W, Boyd O, Young TA, Bertrand SM, Bower JF. J. Am. Chem. Soc. 2020; 142: 1740
  • 50 Wang G.-W, Sokolova OO, Young TA, Christodoulou EM. S, Butts CP, Bower JF. J. Am. Chem. Soc. 2020; 142: 19006
  • 51 Dalling AG, Yamauchi T, McCreanor NG, Cox L, Bower JF. Angew. Chem. Int. Ed. 2019; 58: 221
  • 52 Zhang Y, Chen Z, Xiao Y, Zhang J. Chem. Eur. J. 2009; 15: 5208
  • 53 Liu L, Montgomery J. J. Am. Chem. Soc. 2006; 128: 5348
  • 54 Ogoshi S, Nagata M, Kurosawa H. J. Am. Chem. Soc. 2006; 128: 5350
  • 55 Liu L, Montgomery J. Org. Lett. 2007; 9: 3885
  • 56 Tamaki T, Nagata M, Ohashi M, Ogoshi S. Chem. Eur. J. 2009; 15: 10083
  • 57 Tamaki T, Ohashi M, Ogoshi S. Angew. Chem. Int. Ed. 2011; 50: 12067
  • 58 Liu Q.-S, Wang D.-Y, Yang Z.-J, Luan Y.-X, Yang J.-F, Li J.-F, Pu Y.-G, Ye M. J. Am. Chem. Soc. 2017; 139: 18150
  • 59 Wang G.-W, McCreanor NG, Shaw MH, Whittingham WG, Bower JF. J. Am. Chem. Soc. 2016; 138: 13501
  • 60 Calow AD. J, Dailler D, Bower JF. J. Am. Chem. Soc. 2022; 144: 11069
  • 61 Asako S, Kobashi T, Takai K. J. Am. Chem. Soc. 2018; 140: 15425
  • 62 Kondo H, Miyamura S, Matsushita K, Kato H, Kobayashi C, Arifin, Itami K, Yokogawa D, Yamaguchi J. J. Am. Chem. Soc. 2020; 142: 11306
  • 63 Kondo H, Itami K, Yamaguchi J. Chem. Sci. 2017; 8: 3799
  • 64 Wang T, Wang M, Wang Y, Li M, Zheng Y, Chen Q, Zhao Y, Shi Z. Chem 2022; in press DOI: 10.1016/j.chempr.2022.09.014.