Synlett 2023; 34(19): 2319-2322
DOI: 10.1055/s-0042-1751490
letter

Pd-Catalyzed Intramolecular Cyclization–Thiocarbonylation Cascade Using Thioesters

Ryunosuke Ito
,
Yoshifumi Okura
,
Masahisa Nakada
This work was financially supported in part by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP19H02725 and JP22H02087) and a Waseda University Grant for Special Research Projects.


Abstract

A Pd-catalyzed intramolecular cyclization–thiocarbonylation cascade using thioesters is described. The developed cascade reaction afforded chromane, coumaran, indoline, and oxindole derivatives with a chiral quaternary carbon atom at the benzylic position in high to excellent yields. Relative to those observed in the previously reported relevant cascade using TIPSSPh, the yields with thioesters are almost the same or higher, depending on the substrate. Moreover, the use of thioesters significantly reduces the reaction time to less than one hour. Therefore, AcSPh is advantageous over TIPSSPh in terms of reaction time, atom economy, and cost effectiveness.

Supporting Information



Publication History

Received: 15 July 2023

Accepted after revision: 14 August 2023

Article published online:
18 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Holman KR, Stanko AM, Reisman SE. Chem. Soc. Rev. 2021; 50: 7891
    • 1b Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Eur. J. Org. Chem. 2021; 4566
    • 1c Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
    • 1d Muzart J. Tetrahedron 2013; 69: 6735
    • 1e Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
    • 1f Vlaar T, Ruijter E, Orru RV. A. Adv. Synth. Catal. 2011; 353: 809
    • 1g Pinto A, Jia Y, Neuville L, Zhu J. Chem. Eur. J. 2007; 13: 961
    • 1h Poli G, Giambastiani G, Heumann A. Tetrahedron 2000; 56: 5959
    • 1i Grigg R, Sridharan V. J. Organomet. Chem. 1999; 576: 65
    • 2a Zhang Y, Negishi E. J. Am. Chem. Soc. 1989; 111: 3454
    • 2b Copéret C, Negishi EM. Org. Lett. 1999; 1: 165
    • 3a Grigg R, Redpath J, Sridharan V, Wilson D. Tetrahedron Lett. 1994; 35: 4429
    • 3b Grigg R, MacLachlan W, Rasparini M. Chem. Commun. 2000; 2241
    • 3c Anwar U, Casaschi A, Grigg R, Sansano JM. Tetrahedron 2001; 57: 1361
    • 3d Grigg R, Martin W, Morrisa J, Sridharan V. Tetrahedron 2005; 61: 11380
    • 3e Ishikura M, Takahashi N, Yamada K, Yanada R. Tetrahedron 2006; 62: 11580
    • 3f Hu H, Teng F, Liu J, Hu W, Luo S, Zhu Q. Angew. Chem. Int. Ed. 2019; 58: 9225
  • 4 Matsuura T, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6500
    • 5a Evans P, Grigg R, Ramzan MI, Sridharan V, York M. Tetrahedron Lett. 1999; 40: 3021
    • 5b Dondas HA, Belveren S, Poyraz S, Grigg R, Kilner C, Ferrándiz-Saperas M, Selva E, Sansano JM. Tetrahedron 2018; 74: 6
    • 5c Liu H, Xiong Y, Chen Z. Asian J. Org. Chem. 2021; 10: 2351
  • 6 Grigg R, Major JP, Martin FM, Whittaker M. Tetrahedron Lett. 1999; 40: 7709
  • 7 Brown S, Clarkson S, Grigg R, Thomas WA, Sridharan V, Wilson DM. Tetrahedron 2001; 57: 1347
    • 8a Zhang D, Xiong Y, Guo Y, Zhang L, Wang Z, Ding K. Chem. Eur. J. 2022; 28: e202103670
    • 8b Chen M, Wang X, Yang P, Kou X, Ren Z.-H, Guan Z.-H. Angew. Chem. Int. Ed. 2020; 59: 12199
    • 9a Hosoya Y, Mizoguchi K, Yasukochi H, Nakada M. Synlett 2022; 33: 495

    • For related Pd-catalyzed cascade reactions, see:
    • 9b Hosoya Y, Yasukochi H, Mizoguchi K, Nakada M. Heterocycles 2022; 104: 655
    • 9c Hosoya Y, Kobayashi I, Mizoguchi K, Nakada M. Org. Lett. 2019; 21: 8280
    • 10a Lechuga-Eduardo H, Zarza-Acuña E, Romero-Ortega M. Tetrahedron Lett. 2017; 58: 3234

    • For the use of TIPS thioethers for the formation of aryl aryl thioethers, see:
    • 10b Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
  • 11 Park N, Park K, Jang M, Lee S. J. Org. Chem. 2011; 76: 4371
  • 12 Gao Y, Xiong W, Chen H, Wu W, Peng J, Gao Y, Jiang H. J. Org. Chem. 2015; 80: 7456
  • 13 Viciu MS, Germaneau RF, Navarro-Fernandez O, Stevens ED, Nolan SP. Organometallics 2002; 21: 5470
  • 14 Synthesis of compound 2: A 10 mL test tube was charged with 1 (24.6 mg, 0.0854 mmol, 1.0 equiv), AcSPh (0.0174 mL, 0.128 mmol, 1.5 equiv), Pd(PPh3)4 (9.9 mg, 0.0086 mmol, 0.1 equiv), Cs2CO3 (41.7 mg, 0.128 mmol, 1.5 equiv), and anhydrous toluene (1.7 mL, 0.05 mol/L). The reaction mixture was well degassed and then stirred at 100 °C under a CO atmosphere. After an hour, 1 M aq. HCl (1.7 mL) was added to the reaction mixture at room temperature and the aqueous layer was extracted with ethyl acetate (1.7 mL × 3). The combined organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (hexane/ethyl acetate, 200:1) to afford 2 (23.7 mg, 93%) as a colorless oil: R f = 0.56 (hexane/ethyl acetate, 4/1). 1H NMR (400 MHz, CDCl3): δ = 7.39–7.45 (m, 3 H), 7.34–7.39 (m, 2 H), 7.25 (dd, J = 7.7, 1.6 Hz, 1 H), 7.09–7.15 (m, 1 H), 6.89–6.94 (m, 1 H), 6.82 (dd, J = 8.2, 1.1 Hz, 1 H), 4.15–4.30 (m, 2 H), 3.03 (d, J = 14.6 Hz, 1 H), 2.99 (d, J = 14.6 Hz, 1 H), 2.29–2.36 (m, 1 H), 1.89–1.97 (m, 1 H), 1.52 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 195.2, 153.8, 134.4, 129.5, 129.3, 129.2, 127.9, 127.8, 126.8, 120.6, 117.3, 62.7, 54.6, 34.2, 34.1, 28.4. HRMS (ESI): m/z [M + Na]+ calcd for C18H18NaO2S: 321.0925; found: 321.0919.