Synlett 2023; 34(16): 1866-1893
DOI: 10.1055/s-0042-1751449
account

From Sweet Molecular Giants to Square Sugars and Vice Versa

This work was funded by Université de Strasbourg (IDEX program R701/W15RPE19), the Centre National de la Recherche Scientifique (CNRS) (LIMA-UMR 7042), the Institut Universitaire de France (IUF) and the Fondation Jean-Marie Lehn (PCO-004-2020, PCO-003-2016).


Abstract

This account describes our recent studies in the field of glycomimetics. Our efforts in understanding the structural basis of multivalent effects in glycosidase inhibition have led to decisive mechanistic insights supported by X-ray diffraction analyses and to the discovery of multimeric iminosugars displaying one of the largest binding enhancements reported so far for a non-polymeric enzyme inhibitor. Pushing the limits of the inhibitory multivalent effect has also driven progress in synthetic methodology. The unexpected observation of side products en route to the synthesis of our targets has been the starting point of several new synthetic methodologies, including metal-free deoxygenation of alcohols and one-pot double thioglycosylation. In parallel to our work on ‘giant’ neoglycoclusters, we have developed access to original constrained glycomimetics based on a 4-membered ring (‘square sugars’). Carbohydrates with a quaternary (pseudo)anomeric position were also synthesized from exo-glycals through catalytic hydrogen atom transfer and a novel oxidative radical-polar crossover process.

1 Introduction

2 Sweet Giants

3 Multivalency Spin-Offs

4 Sweet Curiosities

4.1 Square Sugars

4.2 From C,C-Glycosides to Formal Glycosylation of Quinones

5 Conclusion



Publikationsverlauf

Eingereicht: 08. März 2023

Angenommen nach Revision: 05. April 2023

Artikel online veröffentlicht:
16. Mai 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Compain P. Synlett 2014; 25: 1215
    • 2a Compain P, Gore J, Vatèle J.-M. Tetrahedron Lett. 1995; 36: 4059
    • 2b Compain P, Gore J, Vatèle J.-M. Tetrahedron Lett. 1995; 36: 4063
  • 3 Compain P, Gore J, Vatèle J.-M. Tetrahedron 1996; 52: 6647
  • 4 Wuts PG. M, Greene TW. Greene’s Protective Groups in Organic Synthesis, 4th ed. John Wiley & Sons; Hoboken: 2006
  • 5 Lipshutz BH, Pollart D, Monforte J, Kotsuki H. Tetrahedron Lett. 1985; 26: 705
  • 6 Compain P, Vatèle J.-M, Gore J. Synlett 1994; 943
  • 7 Compain P, Gore J, Vatèle J.-M. Tetrahedron 1996; 52: 10405
  • 8 Brunke E.-J, Boehme A, Fahlbusch K.-G. DE Patent 3930962A1, 1991
    • 9a Alekseychuk M, Adrian S, Heinze RC, Heretsch P. J. Am. Chem. Soc. 2022; 144: 11574
    • 9b Yasui H, Hirai K, Yamamoto S, Takao K.-I, Tadano K.-I. J. Antibiot. 2006; 59: 456
    • 9c Yasui H, Hirai K, Yamamoto S, Takao K.-I, Tadano K.-I. Heterocycles 2006; 67: 123
    • 9d Achmatowicz M, Hegedus LS. J. Org. Chem. 2004; 69: 2229
  • 10 Hanessian S, Compain P. Tetrahedron 2002; 58: 6521
  • 11 Hoffmann R. J. Aesth. Art Crit. 1990; 48: 191
  • 12 Quoted from: Smit WA, Bochkov AF, Caple R. Organic Synthesis: The Science Behind the Art . The Royal Society of Chemistry; Cambridge: 1998
  • 13 Eschenmoser A. In Chemical Synthesis, Gnosis to Prognosis . Chatgilialoglu C, Snieckus V. Dordrecht; Kluwer: 1996: 231
    • 14a Hölemann A, Seeberger PH. Curr. Opin. Biotechnol. 2004; 15: 615
    • 14b Adibekian A, Stallforth P, Hecht M.-L, Werz DB, Gagneux P, Seeberger PH. Chem. Sci. 2011; 2: 337
    • 14c Hart GW. Methods Mol. Biol. 2003; 213: 3
  • 15 For a history of the early days of iminosugars, see: Paulsen H. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Stütz AE. Wiley-VCH; New York: 1999: 1-7
    • 16a Inouye S, Tsuruoka T, Niida T. J. Antibiot., Ser. A 1966; 19: 288
    • 16b Inouye S, Tsuruoka T, Koaze Y, Niida T. Tetrahedron 1968; 24: 2125
  • 17 Paulsen H. Angew. Chem., Int. Ed. Engl. 1966; 5: 495
  • 18 Horne G, Wilson FX. Progress Med. Chem. 2011; 50: 135
  • 19 Iminosugars: From Synthesis to Therapeutic Applications . Compain P, Martin OR. Wiley-VCH; Weinheim: 2007
  • 20 McCafferty EH, Scott LJ. Drugs 2019; 79: 543
    • 21a Sears P, Wong C.-H. Angew. Chem. Int. Ed. 1999; 38: 2300
    • 21b Compain P, Martin OR. Bioorg. Med. Chem. 2001; 9: 3077
    • 21c Ernst B, Magnani JL. Nat. Rev. Drug Discovery 2009; 8: 661
    • 21d Koester DC, Dennis C, Holkenbrink A, Werz DB. Synthesis 2010; 3217
    • 21e Chapleur Y. Carbohydrate Mimics, Concepts and Methods . Wiley-VCH; Weinheim: 1998
    • 21f Tamburrini A, Colombo C, Bernardi A. Med. Res. Rev. 2019; 40: 495
    • 21g Zhang G.-L, Ye X.-S. Chem. Eur. J. 2018; 24: 6696
  • 22 Compain P. Molecules 2018; 23: 1658
  • 23 Naresh P, Jubie S, Prabha T, Sundar PS, Santosh SB. Int. J. Pharm. Sci. Res. 2020; 11: 3078
  • 25 Matsubara T. Chem. Soc. Rev. 2022; 51: 8160
  • 26 See for example: Nicolaou KC, Vourloumis D, Wissinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
  • 27 Compain P, Desvergnes V, Ollivier C, Robert F, Suzenet F, Barboiu M, Belmont P, Blériot Y, Bolze F, Bouquillon S, Bourguet E, Braida B, Constantieux T, Désaubry L, Dupont D, Gastaldi S, Jérome F, Legoupy S, Marat X, Migaud M, Moitessier N, Papot S, Peri F, Petit M, Py S, Schulz E, Tranoy-Opalinski I, Vauzeilles B, Vayron P, Vergnes L, Vidal S, Wilmouth S. New J. Chem. 2006; 30: 823
    • 28a Toumieux S, Compain P, Martin OR, Selkti M. Org. Lett. 2006; 8: 4493
    • 28b Toumieux S, Compain P, Martin OR. J. Org. Chem. 2008; 73: 2155
    • 28c Morin MS. T, Toumieux S, Compain P, Peyrat S, Kalinoska-Tluscik J. Tetrahedron Lett. 2007; 48: 8531
  • 29 For a review dealing with catalytic C–H amination at its limits, see: Hazelard D, Nocquet P.-A, Compain P. Org. Chem. Front. 2017; 4: 2500
    • 30a Espino CG, Wehn PM, Chow J, Du Bois J. J. Am. Chem. Soc. 2001; 123: 6935
    • 30b Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 31a Wennekes T, van der Berg RJ. B. H. N, Bonger KM, Donker-Koopman WE, Ghisaidoobe A, van der Marel GA, Strijland A, Aerts JM. F. G, Overkleeft HS. Tetrahedron: Asymmetry 2009; 20: 836
    • 31b Johns BA, Johnson CR. Tetrahedron Lett. 1998; 39: 749
    • 31c Lohse A, Jensen KB, Lundgren K, Bols M. Bioorg. Med. Chem. 1999; 7: 1965
    • 31d McCort Y, Sanière M, Le Merrer Y. Tetrahedron 2003; 59: 2693
  • 32 Iehl J, Nierengarten J.-F. Chem. Eur. J. 2009; 15: 7306
  • 33 Compain P. Chem. Rec. 2020; 20: 10
  • 34 Compain P, Decroocq C, Iehl J, Holler M, Hazelard D, Mena Barragán T, Ortiz Mellet C, Nierengarten J.-F. Angew. Chem. Int. Ed. 2010; 49: 5753
  • 35 Decroocq C, Rodríguez-Lucena D, Russo V, Mena Barragán T, Ortiz Mellet C, Compain P. Chem. Eur. J. 2011; 17: 13825

    • For selected reviews on multivalent effects in glycosidase inhibition, see:
    • 36a Compain P, Bodlenner A. ChemBioChem 2014; 15: 1239
    • 36b Gouin SG. Chem. Eur. J. 2014; 20: 11616
    • 36c Zelli R, Longevial J.-F, Dumy P, Marra A. New J. Chem. 2015; 30: 5050
    • 36d Matassini C, Parmeggiani C, Cardona F, Goti A. Tetrahedron Lett. 2016; 57: 5407
    • 36e González-Cuesta M, Ortiz Mellet C, García Fernández JM. Chem. Commun. 2020; 56: 5207
    • 36f Wang Y, Xiao J, Meng A, Liu C. Molecules 2022; 27: 5420
  • 37 Choi S.-K. Synthetic Multivalent Molecules: Concepts and Biomedical Applications. Wiley-VCH; Weinheim: 2004
  • 38 Pieters RJ. Org. Biomol. Chem. 2009; 7: 2013
  • 39 The term ‘inhitope’ was coined in 2013, see: Rísquez-Cuadro R, García Fernández JM, Nierengarten J.-F, Ortiz Mellet C. Chem. Eur. J. 2013; 19: 16791
  • 40 Lepage ML, Mirloup A, Ripoll M, Stauffert F, Bodlenner A, Ziessel R, Compain P. Belstein J. Org. Chem. 2015; 11: 659
  • 41 Bonduelle C, Huang J, Mena-Barragán T, Ortiz Mellet C, Decroocq C, Etamé E, Heise A, Compain P, Lecommandoux S. Chem. Commun. 2014; 50: 3350
  • 42 Vanni C, Bodlenner A, Marradi M, Schneider JP, de Los Angeles Ramirez M, Moya S, Goti A, Cardona F, Compain P, Matassini C. Molecules 2021; 26: 5684
  • 43 Joosten A, Schneider JP, Lepage ML, Tarnus C, Bodlenner A, Compain P. Eur. J. Org. Chem. 2014; 1866
  • 44 Lepage ML, Meli A, Bodlenner A, Tarnus C, De Riccardis F, Izzo I, Compain P. Belstein J. Org. Chem. 2014; 10: 1406
  • 45 Lepage ML, Schneider JP, Bodlenner A, Meli A, De Riccardis F, Schmitt M, Tarnus C, Nguyen-Huynh N.-T, Francois Y.-N, Leize-Wagner E, Birck C, Cousido-Siah A, Podjarny A, Izzo I, Compain P. Chem. Eur. J. 2016; 22: 5151
  • 46 Nierengarten J.-F, Schneider JP, Nguyet Trinh TM, Joosten A, Holler M, Lepage ML, Bodlenner A, García-Moreno MI, Ortiz Mellet C, Compain P. Chem. Eur. J. 2018; 24: 2483
  • 47 Lafosse M, Liang Y, Schneider JP, Cartier E, Bodlenner A, Compain P, Heck M.-P. Molecules 2022; 27: 4472
  • 48 Schneider JP, Tommasone S, Della Sala P, Gaeta C, Talotta C, Tarnus C, Neri P, Bodlenner A, Compain P. Pharmaceuticals 2020; 13: 366
  • 49 Trinh TM. N, Holler M, Schneider JP, García-Moreno MI, García Fernández JM, Boldlenner A, Compain P, Ortiz Mellet C, Nierengarten J.-F. J. Mater. Chem. B 2017; 5: 6546
  • 50 Muñoz A, Sigwalt D, Illescas BM, Luczkowiak J, Rodríguez L, Nierengarten I, Holler M, Remy J.-S, Buffet K, Vincent SP, Rojo J, Delgado R, Nierengarten J.-F, Martín N. Nat. Chem. 2016; 8: 50
  • 51 Assailly C, Bridot C, Saumonneau A, Lottin P, Roubinet B, Krammer E.-V, François F, Vena F, Landemarre L, Alvarez Dorta D, Deniaud D, Grandjean C, Tellier C, Pascual S, Montembault Fontaine L, Daligault F, Bouckaert J, Gouin SG. Chem. Eur. J. 2020; 27: 3142
  • 52 Schaschke N, Matschiner G, Zettl F, Marquardt U, Bergner A, Bode W, Sommerhoff CP, Moroder L. Chem. Biol. 2001; 8: 313
  • 53 Stauffert F, Bodlenner A, Trinh TM. N, García-Moreno MI, Ortiz Mellet C, Nierengarten J.-F, Compain P. New J. Chem. 2016; 40: 7421
  • 54 Pichon MM, Stauffert F, Bodlenner A, Compain P. Org. Biomol. Chem. 2019; 17: 5801
  • 55 Gnanesh Kumar BS, Pohlentz G, Schulte M, Mormann M, Siva Kumar N. Glycobiology 2014; 24: 252
  • 56 Mirabella S, D’Adamio G, Matassini C, Goti A, Delgado S, Gimeno A, Robina I, Moreno-Vargas AJ, Šesták S, Jimenez-Barbero J, Cardona F. Chem. Eur. J. 2017; 23: 14585

    • For selected examples, see:
    • 57a Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H, Pannu NS, Read RJ, Bundle DR. Nature 2000; 403: 669
    • 57b Baeriswyl S, Javor S, Stocker A, Darbre T, Reymond JL. Helv. Chim. Acta 2019; 102: e1900178
    • 57c Schwefel D, Maierhofer C, Beck JG, Seeberger S, Diederichs K, Möller HK, Welte W, Wittmann V. J. Am. Chem. Soc. 2010; 132: 8704
  • 58 Howard E, Cousido-Siah A, Lepage ML, Schneider JP, Bodlenner A, Mitschler A, Meli A, Izzo I, Alvarez A, Podjarny A, Compain P. Angew. Chem. Int. Ed. 2018; 57: 8002
  • 59 Liang Y., Spichty M., Bodlenner A., Compain P. unpublished results.
  • 60 For a recent study on glycoclusters targeting C-type lectin receptor DC-SIGN combining chelation and statistical rebinding, see: Porkolab V, Lepšík M, Ordanini S, St John A, Le Roy A, Thépaut M, Paci E, Ebel C, Bernardi A, Fieschi F. ACS Centr. Sci. 2023; 9: 709
    • 61a Decroocq C, Rodríguez-Lucena D, Ikeda K, Asano N, Compain P. ChemBioChem 2012; 13: 661
    • 61b Joosten A, Decroocq C, de Sousa J, Schneider J, Etamé E, Bodlenner A, Butters TD, Compain P. ChemBioChem 2014; 15: 309
  • 62 Compain P, Decroocq C, Joosten A, de Sousa J, Rodríguez-Lucena D, Butters TD, Bertrand J, Clément R, Boinot C, Becq F, Norez C. ChemBioChem 2013; 14: 2050
  • 63 Stauffert F, Serra-Vinardell J, Gómez-Grau M, Michelakakis H, Mavridou I, Grinberg D, Vilageliu L, Casas J, Bodlenner A, Delgado A, Compain P. Org. Biomol. Chem. 2017; 15: 3681

    • For recent reviews on Gaucher disease, see:
    • 64a Roh J, Subramanian S, Weinreb NJ, Kartha RV. J. Mol. Med. 2022; 100: 499
    • 64b Horowitz M, Elstein D, Zimran A, Goker-Alpan O. Hum. Mutat. 2016; 37: 1121
    • 64c Hruska KS, LaMarca ME, Scott CR, Sidransky E. Hum. Mutat. 2008; 29: 567
  • 65 For a recent review see: Martinez-Bailen M, Clemente F, Matassini C, Cardona F. Pharmaceuticals 2022; 15: 823
  • 66 Parenti G, Moracci M, Fecarotta S, Andria G. Future Med. Chem. 2014; 6: 1031
  • 67 Riboldi GM, Di Fonzo AB. Cells 2019; 8: 364
  • 68 Benito JM, García Fernández JM, Ortiz Mellet C. Expert Opin. Ther. Pat. 2011; 21: 885
  • 69 Kuriyama C, Kamiyama O, Ikeda K, Sanae F, Kato A, Adachi I, Imahori T, Takahata H, Okamoto T, Asano N. Bioorg. Med. Chem. 2008; 16: 7330
  • 70 Asano N, Ikeda K, Yu L, Kato A, Takebayashi K, Adachi I, Kato I, Ouchi H, Takahata H, Fleet GW. J. Tetrahedron: Asymmetry 2005; 16: 223
  • 71 Zhu X, Sheth KA, Li S, Chang H, Fan J. Angew. Chem. Int. Ed. 2005; 44: 7450
  • 72 Jenkinson SF, Fleet GW. J, Nash RJ, Koike Y, Adachi I, Yoshihara A, Morimoto K, Izumori K, Kato A. Org. Lett. 2011; 13: 4064
  • 73 Santana AG, Robinson K, Vickers C, Deen MC, Chen H.-M, Zhou S, Dai B, Fuller M, Boraston AB, Vocadlo DJ, Clarke LA, Withers SG. Angew. Chem. Int. Ed. 2022; 61: e202207974
  • 74 Oulaïdi F, Front-Deschamps S, Gallienne E, Lesellier E, Ikeda K, Asano N, Compain P, Martin OR. ChemMedChem 2011; 6: 353
  • 75 Compain P, Martin OR, Boucheron C, Godin G, Yu L, Ikeda K, Asano N. ChemBioChem 2006; 7: 1356
  • 76 Serra-Vinardell J, Díaz L, Casas J, Grinberg D, Vilageliu L, Michelakakis H, Mavridou I, Aerts JM. F. G, Decroocq C, Compain P, Delgado A. ChemMedChem 2014; 9: 1744
    • 77a Egido-Gabás M, Canals D, Casas J, Llebaria A, Delgado A. ChemMedChem 2007; 2: 992
    • 77b Sanchez-Olle G, Duque J, Egido-Gabás M, Casas J, Lluch M, Chabas A, Grinberg D, Vilageliu L. Blood Cells Mol. Dis. 2009; 42: 159
  • 78 Díaz L, Bujons J, Casas J, Llebaria A, Delgado A. J. Med. Chem. 2010; 53: 5248
  • 79 Zimmer K.-P, le Coutre P, Aerts HM. F. G, Harzer K, Fukuda M, O’Brien JS, Naim HY. J. Pathol. 1999; 188: 407
  • 80 Pichon MM, Stauffert F, Addante-Moya LG, Bodlenner A, Compain P. Eur. J. Org. Chem. 2018; 1538
  • 81 Rauter AP, Fernandes AC, Figueiredo JA. J. Carbohydr. Chem. 1998; 17: 1037
    • 82a Anson CE, Creaser CS, Malkov AV, Mojovic L, Stephenson GR. J. Organomet. Chem. 2003; 668: 101
    • 82b Majewski M, Irvine NM, Bantle GW. J. Org. Chem. 1994; 59: 6697
    • 82c Jirousek MR, Mazza SM, Salomon RG. J. Org. Chem. 1988; 53: 3688
    • 83a Procter DJ, Flowers RA. II, Skrydstrup T. Organic Synthesis Using Samarium Diiodide: A Practical Guide . The Royal Society of Chemistry; Cambridge: 2009
    • 83b Molander GA. Chem. Rev. 1992; 92: 29
    • 83c Soderquist JA. Aldrichimica Acta 1991; 24: 15
  • 84 Wang K, Chen J, Liu W, Kong W. Angew. Chem. Int. Ed. 2022; 61: e202212664
  • 85 Lepage ML, Schneider JP, Bodlenner A, Compain P. J. Org. Chem. 2015; 80: 10719

    • For recent reviews with examples of CuAAC-mediated carbohydrate-based macrocycles, see:
    • 86a Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Chem. Rev. 2021; 121: 7638
    • 86b Xie J, Bogliotti N. Chem. Rev. 2014; 114: 7678
  • 87 For a recent review on nucleophilic ring opening of 1,6-anhydrosugars, see: Hazelard D, Compain P. Eur. J. Org. Chem. 2021; 3501
  • 88 Lepage ML, Bodlenner A, Compain P. Eur. J. Org. Chem. 2013; 1963
  • 89 In 2015, Zhu’s group reported independently a related ring-opening process using DCM as the reaction solvent, see: Cui T, Smith R, Zhu X. Carbohydr. Res. 2015; 416: 14
    • 90a Godin G, Compain P, Masson G, Martin OR. J. Org. Chem. 2002; 67: 6960
    • 90b Masson G, Compain P, Martin OR. Org. Lett. 2000; 2: 2971
  • 91 Liang Y, Laporte AG, Bodlenner A, Compain P. Eur. J. Org. Chem. 2023; 26: e202201311
  • 92 Daher G, Seoane G. Org. Biomol. Chem. 2022; 20: 1690
    • 93a A few years after the beginning of our study, the group of Jensen reported a lego strategy based on the ‘one-pot’ use of the two most popular click reactions: CuAAC and thiol-ene coupling. Mimics of tri- and tetrasaccharides were synthesized by combining functionalized monomeric building blocks, see: Brinkø A, Risinger C, Lambert A, Blixt O, Grandjean C, Jensen HH. Org. Lett. 2019; 21: 7544
    • 93b For a review on the synthesis of glycomimetics by way of photoinitiated thiol-ene reactions of enoses, see: Borbás A. Chem. Eur. J. 2020; 26: 6090
    • 94a Zhu X, Dere RT, Jiang J, Zhang L, Wang X. J. Org. Chem. 2011; 76: 10187
    • 94b Dere RT, Wang Y, Zhu X. Org. Biomol. Chem. 2008; 6: 2061
  • 95 Céspedes Dávila MF, Schneider JP, Godard A, Hazelard D, Compain P. Molecules 2018; 23: 914
    • 96a Durette PL, Shen TY. Carbohydr. Res. 1978; 67: 484
    • 96b Staněk J, Šindlerová M, Černy M. Coll. Czech. Chem. Commun. 1965; 30: 297

      For examples, see:
    • 97a Xin G, Zhu X. Tetrahedron Lett. 2012; 53: 4309
    • 97b Morais RG, Humphrey AJ, Falconer RA. Carbohydr. Res. 2009; 344: 1039
    • 97c Lazar L, Csavas M, Herczeg M, Herczegh P, Borbás A. Org. Lett. 2012; 14: 4650
    • 97d Dere RT, Kumar A, Kumar V, Zhu X.-M, Schmidt RR. J. Org. Chem. 2011; 76: 7539
    • 97e Harpp DN, Gleason JG. J. Am. Chem. Soc. 1971; 93: 2437
    • 97f Zhao X, Wu B, Shu P, Meng L, Zeng J, Wan Q. Carbohydr. Res. 2021; 508: 108415
    • 97g Kelemen V, Bege M, Eszenyi D, Debreczeni N, Bényei A, Stürzer T, Herczegh P, Borbás A. Chem. Eur. J. 2019; 25: 14555
    • 98a Elbein AD, Pan YT, Pastuszak I, Caroll D. Glycobiology 2003; 13: 17R
    • 98b Iturriaga G, Suárez R, Nova-Franco B. Int. J. Mol. Sci. 2009; 10: 3793
    • 99a Ohtake S, Wang YJ. J. Pharm. Sci. 2011; 100: 2020
    • 99b Thanna S, Sucheck SJ. MedChemComm 2016; 7: 69
    • 99c O’Neill MK, Piligian BF, Olson CD, Woodruff PJ, Swarts BM. Pure. Appl. Chem. 2017; 89: 1223
    • 100a Wolber JM, Urbanek BL, Meints LM, Piligian BF, Lopez-Casillas IC, Zochowski KM, Woodruff PJ, Swarts BM. Carbohydr. Res. 2017; 450: 60
    • 100b Backus KM, Boshoff HI, Barry CS, Boutureira O, Patel MK, D’Hooge F, Lee SS, Via LE, Tahlan K, Barry CE, Davis BG. Nat. Chem. Biol. 2011; 7: 228
  • 101 Tardieu D, Céspedes Dávila MF, Hazelard D, Compain P. Synthesis 2018; 50: 3927
  • 102 Zeng X, Smith R, Zhu X. J. Org. Chem. 2013; 78: 4165
  • 103 Hensienne R, Hazelard D, Compain P. ARKIVOC 2019; (iv): 4
  • 104 Hazelard D, Hensienne R, Behr J.-B, Compain P. Carbohydrate-spiro-heterocycles . In Topics in Heterocyclic Chemistry, Vol. 57. Somsák L. Springer; Switzerland: 2019: 261-290
  • 105 Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 106a Carreira EM, Fessard TC. Chem. Rev. 2014; 114: 8257
    • 106b Tang K, Wang S, Gao W, Song Y, Yu B. Acta Pharm. Sin. B 2022; 12: 4309
  • 107 For a review on conformationally restricted glycoside derivatives, see: Maaliki C, Gauthier C, Massinon O, Sagar R, Vincent SP, Blériot Y. Conformationally Restricted Glycoside Derivatives as Mechanistic Probes and/or Inhibitors of Sugar Processing Enzymes and Receptors. Carbohydrate Chemistry, Vol. 40, Chap. 20. Rauter AP, Lindhorst T, Queneau Y. The Royal Society of Chemistry; Cambridge: 2014: 418-444
  • 108 Nocquet P.-A, Hazelard D, Gruntz G, Compain P. J. Org. Chem. 2013; 78: 6751

    • For selected reviews on SmI2-mediated carbonyl-alkene coupling, see:
    • 109a Harb HY, Procter DJ. Synlett 2012; 6
    • 109b Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
    • 109c Heravi MM, Nazari A. RSC Adv. 2022; 12: 9944

      HMPA was used as an additive to generate an activated HMPA–SmI2 complex, see:
    • 110a Weinges K, Schmidbauer SB, Schick H. Chem. Ber. 1994; 127: 1305
    • 110b Molander GA, McKie JA. J. Org. Chem. 1992; 57: 3132
    • 110c Sadasivam DV, Sudhadevi Antharjanam PK, Prasad E, Flowers RA. II. J. Am. Chem. Soc. 2008; 130: 7228
  • 111 Johnston D, McCusker CM, Procter DJ. Tetrahedron Lett. 1999; 40: 4913
  • 112 Gilles P, Py S. Org. Lett. 2012; 14: 1042
  • 113 Undheim K. Synthesis 2014; 46: 1957

    • For recent reviews on catalytic C–H amination of non-activated C(sp3)–H bonds, see:
    • 114a Singh R, Mukherjee A. ACS Cat. 2019; 9: 3604
    • 114b Hayashi H, Uchida T. Eur. J. Org. Chem. 2020; 909
  • 115 For a discussion on the strength and weakness of the three main approaches towards directed C(sp3)–H functionalization (transition-metal-catalyzed activation, HAT, and transition-metal-catalyzed carbene/nitrene transfer), see: Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 57
    • 116a Nocquet P.-A, Hensienne R, Wencel-Delord J, Wimmer E, Hazelard D, Compain P. Org. Biomol. Chem. 2015; 13: 9176
    • 116b Nocquet P.-A, Hensienne R, Wencel-Delord J, Laigre E, Sidelarbi K, Becq F, Norez C, Hazelard D, Compain P. Org. Biomol. Chem. 2016; 14: 2780
  • 117 Milczek E, Boudet N, Blakey S. Angew. Chem. Int. Ed. 2008; 47: 6825
  • 118 Wiberg KB. In The Chemistry of Cyclobutanes Liebman J. F.; John Wiley & Sons, Chichester, 2005; 1–16.

    • For other examples of catalytic C–H amination on a cyclobutane ring, see:
    • 120a Mazurais M, Lescot C, Retailleau P, Dauban P. Eur. J. Org. Chem. 2014; 66
    • 120b Alderson JM, Phelps AM, Scamp RJ, Dolan NS, Schomaker JM. J. Am. Chem. Soc. 2014; 136: 16720
    • 120c Scamp RJ, Jirak JG, Dolan NS, Guzei IA, Schomaker JM. Org. Lett. 2016; 18: 3014
    • 120d Liu W, Zhong D, Yu C.-L, Zhang Y, Wu D, Feng Y.-L, Cong H, Lu X, Liu W.-B. Org. Lett. 2019; 21: 2673
    • 120e Huang M, Paretsky J, Schomaker JM. ChemCatChem 2020; 12: 3076
  • 121 For a review on iminosugars as potential therapeutic agents for cystic fibrosis, see: Esposito A, D’Alonzo D, De Fenza M, De Gregorio E, Tamanini A, Lippi G, Dechecchi MC, Guaragna A. Int. J. Mol. Sci. 2020; 21: 3353
  • 122 Nocquet P.-A, Hazelard D, Compain P. Eur. J. Org. Chem. 2011; 6619
  • 123 Nocquet P.-A, Hazelard D, Compain P. Tetrahedron 2012; 68: 4117
  • 124 Hazelard D, Compain P. Org. Biomol. Chem. 2017; 15: 3806
  • 125 Tam TF, Fraser-Reid B. J. Org. Chem. 1980; 45: 1344

    • For recent reviews on the synthesis of C-glycosides, see:
    • 126a Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
    • 126b Liao H, Ma J, Yao H, Liu X.-W. Org. Biomol. Chem. 2018; 16: 1791
    • 126c Bokor E, Kun S, Goyard D, Tóht M, Praly J.-P, Vidal S, Somsák L. Chem. Rev. 2017; 117: 1687
    • 126d Gou X.-Y, Zhu X.-Y, Zhang B.-S, Liang Y.-M. Chem. Eur. J. 2023; e202203351
  • 127 For a recent review on quaternary stereocenters in carbohydrates, see: Bera S, Chatterjee B, Mondal D. RSC Adv. 2016; 6: 77212

    • Very recently, the group of He reported an original access to C,C-glycosides by way of gem-C,B-glycosylation, see:
    • 128a Zhao W.-C, Li R.-P, Ma C, Liao Q.-Y, Wang M, He Z.-T. J. Am. Chem. Soc. 2022; 144: 2460
    • 128b He Z.-T. Synlett 2022; 1103
    • 129a Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 129b Hoffmann RW. Chem. Soc. Rev. 2016; 45: 577
    • 129c Green SA, Crossley SW. M, Matos JL. M, Vasquez-Cespedes S, Shevik SL, Shenvi RA. Acc. Chem. Res. 2018; 51: 2628
    • 129d Shevick SL, Wilson CV, Kotesova S, Kim D, Holland PL, Shenvi RA. Chem. Sci. 2020; 11: 12401

      For recent reviews on C-glycosylation involving glycosyl radicals, see:
    • 130a Ghosh T, Nokami T. Carbohydr. Res. 2022; 522: 108677
    • 130b Xu L.-Y, Fan N.-L, Hu X.-G. Org. Biomol. Chem. 2020; 18: 5095
  • 131 For a review on catalytic radical reactions of unsaturated sugars, see: Goti G. ChemCatChem 2022; 14: e202200290
    • 132a Lo JC, Kim D, Pan C.-M, Edwards JT, Yabe Y, Gui J, Qin T, Gutiérrez S, Giacoboni J, Smith MW, Holland PL, Baran PS. J. Am. Chem. Soc. 2017; 139: 2484
    • 132b Lo JC, Gui J, Yabe Y, Pan C.-M, Baran PS. Nature 2014; 516: 343
  • 133 Taillefumier C, Chapleur Y. Chem. Rev. 2004; 104: 263
  • 134 It should be noted that nogalamycin and its derivatives are not, strictly speaking, C,C-glycosides. They may be viewed as C-arylated hexoses with a quaternary carbon at the C-5 position.
  • 136 Moore DF. Jr, Brown TD, LeBlanc M, Dahlberg S, Miller TP, McClure S, Fisher RI. Invest. New Drugs 1999; 17: 169
  • 137 Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, Hall MD. ACS Cent. Sci. 2022; 6: 672
  • 138 Waldscheck B, Streiff M, Notz W, Kinzy W, Schmidt RR. Angew. Chem. Int. Ed. 2001; 40: 4007
  • 140 Tardieu D, Desnoyers M, Laye C, Hazelard D, Kern N, Compain P. Org. Lett. 2019; 21: 7262

    • For examples of synthetic approaches towards nogalamycin, see:
    • 141a Peng R, VanNieuwenhze MS. J. Org. Chem. 2019; 84: 173
    • 141b Peng R, VanNieuwenhze MS. J. Org. Chem. 2019; 84: 760
    • 141c Sitonen V, Wandi BN, Tormanen AP, Metsa-Ketela M. ACS Chem. Biol. 2018; 13: 2433
    • 141d Hauser FM, Ganguly D. J. Org. Chem. 2000; 65: 1842
    • 141e Matsuda F, Kawasaki M, Terashima S. Pure. Appl. Chem. 1989; 61: 385
    • 142a Wiley PF, MacKellar FA, Caron EL, Kelly RB. Tetrahedron Lett. 1968; 9: 663
    • 142b Li LH, Krueger WC. Pharmacol. Ther. 1991; 51: 239
  • 143 For a detailed mechanistic study concerning the quenching of post-coupling radical intermediates in iron-hydride HAT, see: Kim D, Rahaman SM. W, Mercado BQ, Poli R, Holland PL. J. Am. Chem. Soc. 2019; 141: 7473
  • 144 Siitonen V, Selvaraj B, Niiranen L, Lindqvist Y, Schneider G, Metsä-Ketelä M. Proc. Nat. Acad. Sci. U. S. A. 2016; 113: 5251
  • 145 For a recent review, see: Donzel M, Karabiyikli D, Cotos L, Elhabiri M, Davioud-Charvet E. Eur. J. Org. Chem. 2021; 3622
  • 146 Liu S, Shen T, Luo Z, Liu Z.-Q. Chem. Commun. 2019; 55: 4027

    • For examples of radical addition to 1,4-quinones, see:
    • 147a Zhang H, Wang B, Xu H, Li F.-Y, Wang J.-Y. Org. Chem. Front. 2021; 8: 6019
    • 147b Kumli E, Montermini F, Renaud P. Org. Lett. 2006; 8: 5861
  • 148 Yamago S, Hashidume M, Yoshida J.-I. Tetrahedron 2002; 58: 6805
  • 149 He L, Zhang YZ, Tanoh M, Chen G.-R, Praly J.-P, Chrysina ED, Tiraidis C, Kosmopoulou M, Leonidas DD, Oikonomados NG. Eur. J. Org. Chem. 2007; 596
  • 150 Liu H, Laporte AG, Tardieu D, Hazelard D, Compain P. J. Org. Chem. 2022; 87: 13178
  • 151 Addition of silyl radicals to various 1,4-benzoquinones has been described to take place at the less hindered C=O site as well as at the C=C site, see: Alberti A, Chatgilialoglu C, Pedulli GF, Zanirato P. J. Am. Chem. Soc. 1986; 108: 4993
    • 152a Zhu X.-Q, Wang C.-H. J. Org. Chem. 2010; 75: 5037
    • 152b Song Y, Buettner GR. Free Radical Biol. Med. 2010; 49: 919
  • 153 Schuetz A, Murakami T, Takada N, Junker J, Hashimoto M, Griesinger C. Angew. Chem. Int. Ed. 2008; 47: 2032
  • 154 Heredia-Vieira SC, Simonet AM, Vilegas W, Macías FA. J. Nat. Prod. 2015; 78: 77
  • 155 Dias Silva MJ, Simonet AM, Silva NC, Dias AL. T, Vilegas W, Macías FA. J. Nat. Prod. 2019; 82: 1496

    • For selected references, see:
    • 156a Matsumoto T, Katsuki M, Suzuki K. Tetrahedron Lett. 1988; 29: 6935
    • 156b Kometami T, Kondo H, Fujimori Y. Synthesis 1988; 1005
    • 156c Ben A, Yamauchi T, Matsumoto T, Suzuki K. Synlett 2004; 225 ; and references cited therein
    • 156d dos Santos RG, Jesus AR. X, Caio JM, Rauter AP. Curr. Org. Chem. 2011; 15: 128
  • 157 The term ‘non-innocent’ is used by analogy with ‘non-innocent’ ligands. For a review on redox non-innocent ligands, see: Lyaskovskyy V, de Bruin B. ACS Catal. 2012; 2: 270