Synlett 2023; 34(07): 793-806
DOI: 10.1055/s-0042-1751373
account
Chemical Synthesis and Catalysis in India

Recent Advancements in Bottromycin Biosynthesis

Krushnamurthy PH
,
Subramanya KS
,
Simita Das
,
Dhananjaya G.
,
Nilkamal Mahanta
We thank Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Ministry of Science and Technology, India for providing financial assistance for this work (Grant No: SERB-SRG/2019/000948 to Dr. Nilkamal Mahanta).


Abstract

Bottromycin is a structurally complex cyclic peptidic compound isolated from Streptomyces bottropensis and related organisms and belongs to the RiPP family of natural products (ribosomally synthesized and post-translationally modified peptides). It exhibits potent antibacterial properties against gram-positive pathogens (including drug resistant strains such as MRSA, MIC 1 μg/mL and VRE, MIC 0.5 μg/mL) and mycoplasma. Bottromycin blocks the binding of the aminoacyl-tRNA to the A-site on the 50S ribosome and hence inhibits protein synthesis. Bottromycins contain structurally diverse post-translational modifications (PTMs) on a small peptide (GPVVVFDC) including a unique macrocyclic amidine, rare β-methylation, terminal thiazole heterocycle, oxidative decarboxylation, and Asp epimerization, among others. It exhibits a precursor peptide organization with a C-terminal follower peptide and a N-terminal core peptide. There are several new studies reported recently which gave detailed insights into the bottromycin biosynthesis pathway. This Account highlights the current advancements in understanding the biosynthetic pathway of bottromycin focusing mainly on the biochemically and structurally characterized enzymes and intricate details of the peptide–protein biophysical interactions. These studies have provided a strong foundation for conducting combinatorial biosynthesis and synthetic biological studies to create novel bottromycin variants for therapeutic applications.

1 Introduction

2 Biosynthetic Pathway for Bottromycin

3 Enzymology of Bottromycin Biosynthesis

3.1 Cleavage of Methionine (BotP)

3.2 Radical SAM Methyltransferases (BotRMT1, BotRMT2, BotRMT3)

3.3 ATP-Dependent YcaO Enzymes

3.3.1 Thiazoline Formation by BotC

3.3.2 Macrolactamidine Formation by BotCD

3.4 Follower Peptide Hydrolysis (BotAH)

3.5 Aspartate Epimerization (BotH)

3.6 Oxidative Decarboxylation (BotCYP)

3.7 O-Methyltransferase (BotOMT)

4 Heterologous Bottromycin Production and Analogue Preparation

5 Summary and Outlook



Publication History

Received: 21 June 2022

Accepted after revision: 13 September 2022

Article published online:
17 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian K.-D, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ. T, Rebuffat S, Ross RP, Sahl H.-G, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang G.-L, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Nat. Prod. Rep. 2012; 30: 108
  • 2 Ortega MA, van der Donk WA. Cell Chem. Biol. 2016; 23: 31
  • 3 Hudson GA, Mitchell DA. Curr. Opin. Microbiol. 2018; 45: 61
  • 4 Hetrick KJ, van der Donk WA. Curr. Opin. Chem. Biol. 2017; 38: 36
  • 5 Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Burgos MJ. G, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl H.-G, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng J.-K, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. Nat. Prod. Rep. 2021; 38: 130
  • 6 Sikandar A, Koehnke J. Nat. Prod. Rep. 2019; 36: 1576
  • 7 Sardar D, Schmidt EW. Curr. Opin. Chem. Biol. 2016; 31: 15
  • 8 Dang T, Süssmuth RD. Acc. Chem. Res. 2017; 50: 1566
  • 9 Weissman KJ. Nat. Prod. Rep. 2016; 33: 203
  • 10 Winn M, Fyans JK, Zhuo Y, Micklefield J. Nat. Prod. Rep. 2016; 33: 317
  • 11 Burkhart BJ, Hudson GA, Dunbar KL, Mitchell DA. Nat. Chem. Biol. 2015; 11: 564
  • 12 Waisvisz JM, van der Hoeven MG, van Peppen J, Zwennis WC. M. J. Am. Chem. Soc. 1957; 79: 4520
  • 13 Shimamura H, Gouda H, Nagai K, Hirose T, Ichioka M, Furuya Y, Kobayashi Y, Hirono S, Sunazuka T, Ōmura S. Angew. Chem. Int. Ed. 2009; 48: 914
  • 14 Hou Y, Tianero MD. B, Kwan JC, Wyche TP, Michel CR, Ellis GA, Vazquez-Rivera E, Braun DR, Rose WE, Schmidt EW. Org. Lett. 2012; 14: 5050
  • 15 Huo L, Rachid S, Stadler M, Wenzel SC, Müller R. Chem. Biol. 2012; 19: 1278
  • 16 Crone WJ, Leeper FJ, Truman AW. Chem. Sci. 2012; 3: 3516
  • 17 Otaka T, Kaji A. J. Biol. Chem. 1976; 251: 2299
  • 18 Franz L, Kazmaier U, Truman AW, Koehnke J. Nat. Prod. Rep. 2021; 38: 1659
  • 19 Tanaka N, Nishimura T, Nakamura S, Umezawa H. J. Antibiot. 1966; 19: 149
  • 20 Kobayashi Y, Ichioka M, Hirose T, Nagai K, Matsumoto A, Matsui H, Hanaki H, Masuma R, Takahashi Y, Ōmura S, Sunazuka T. Bioorg. Med. Chem. Lett. 2010; 20: 6116
  • 21 Yamada T, Yagita M, Kobayashi Y, Sennari G, Shimamura H, Matsui H, Horimatsu Y, Hanaki H, Hirose T, Omura S, Sunazuka T. J. Org. Chem. 2018; 83: 7135
  • 22 Yamada T, Miyazawa T, Kuwata S, Watanabe H. Bull. Chem. Soc. Jpn. 1977; 50: 1827
  • 23 Gomez-Escribano JP, Song L, Bibb MJ, Challis GL. Chem. Sci. 2012; 3: 3522
  • 24 Schwalen CJ, Hudson GA, Kosol S, Mahanta N, Challis GL, Mitchell DA. J. Am. Chem. Soc. 2017; 139: 18154
  • 25 Mann G, Huo L, Adam S, Nardone B, Vendome J, Westwood NJ, Müller R, Koehnke J. ChemBioChem 2016; 17: 2286
  • 26 Sikandar A, Franz L, Adam S, Santos-Aberturas J, Horbal L, Luzhetskyy A, Truman AW, Kalinina OV, Koehnke J. Nat. Chem. Biol. 2020; 16: 1013
  • 27 Sikandar A, Franz L, Melse O, Antes I, Koehnke J. J. Am. Chem. Soc. 2019; 141: 9748
  • 28 Adam S, Franz L, Milhim M, Bernhardt R, Kalinina OV, Koehnke J. J. Am. Chem. Soc. 2020; 142: 20560
  • 29 Franz L, Adam S, Santos-Aberturas J, Truman AW, Koehnke J. J. Am. Chem. Soc. 2017; 139: 18158
  • 30 Crone WJ, Vior NM, Santos-Aberturas J, Schmitz LG, Leeper FJ, Truman AW. Angew. Chem. Int. Ed. 2016; 55: 9639
  • 31 Matsui M, Fowler JH, Walling LL. Biol. Chem. 2006; 387: 1535
  • 32 Struck A.-W, Thompson ML, Wong LS, Micklefield J. ChemBioChem 2012; 13: 2642
  • 33 Mahanta N, Hudson GA, Mitchell DA. Biochemistry 2017; 56: 5229
  • 34 Broderick JB, Duffus BR, Duschene KS, Shepard EM. Chem. Rev. 2014; 114: 4229
  • 35 Kelly WL, Pan L, Li C. J. Am. Chem. Soc. 2009; 131: 4327
  • 36 Benjdia A, Pierre S, Gherasim C, Guillot A, Carmona M, Amara P, Banerjee R, Berteau O. Nat. Commun. 2015; 6: 8377
  • 37 Parent A, Guillot A, Benjdia A, Chartier G, Leprince J, Berteau O. J. Am. Chem. Soc. 2016; 138: 15515
  • 38 Kim HJ, McCarty RM, Ogasawara Y, Liu Y, Mansoorabadi SO, LeVieux J, Liu H. J. Am. Chem. Soc. 2013; 135: 8093
  • 39 Westrich L, Heide L, Li S.-M. ChemBioChem 2003; 4: 768
  • 40 Rachid S, Scharfe M, Blöcker H, Weissman KJ, Müller R. Chem. Biol. 2009; 16: 70
  • 41 Ostash B, Walker S. Nat. Prod. Rep. 2010; 27: 1594
  • 42 Werner WJ, Allen KD, Hu K, Helms GL, Chen BS, Wang SC. Biochemistry 2011; 50: 8986
  • 43 McLaughlin MI, van der Donk WA. Biochemistry 2018; 57: 4967
  • 44 Wang Y, Begley TP. J. Am. Chem. Soc. 2020; 142: 9944
  • 45 Jarrett JT. J. Biol. Chem. 2019; 294: 11726
  • 46 Dunbar KL, Melby JO, Mitchell DA. Nat. Chem. Biol. 2012; 8: 569
  • 47 Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. Chem. Rev. 2017; 117: 5389
  • 48 Dunbar KL, Mitchell DA. J. Am. Chem. Soc. 2013; 135: 8692
  • 49 Grøftehauge MK, Hajizadeh NR, Swann MJ, Pohl E. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2015; 71: 36
  • 50 Morinaka BI, Vagstad AL, Helf MJ, Gugger M, Kegler C, Freeman MF, Bode HB, Piel J. Angew. Chem. Int. Ed. 2014; 53: 8503
  • 51 Parent A, Benjdia A, Guillot A, Kubiak X, Balty C, Lefranc B, Leprince J, Berteau O. J. Am. Chem. Soc. 2018; 140: 2469
  • 52 Cotter PD, O’Connor PM, Draper LA, Lawton EM, Deegan LH, Hill C, Ross RP. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 18584
  • 53 Benjdia A, Guillot A, Ruffié P, Leprince J, Berteau O. Nat. Chem. 2017; 9: 698
  • 54 Bains J, Kaufman L, Farnell B, Boulanger MJ. J. Mol. Biol. 2011; 406: 649
  • 55 Wipf P, Fritch PC. Tetrahedron Lett. 1994; 35: 5397
  • 56 Liu H, Thomas EJ. Tetrahedron Lett. 2013; 54: 3150
  • 57 Dunbar KL, Chekan JR, Cox CL, Burkhart BJ, Nair SK, Mitchell DA. Nat. Chem. Biol. 2014; 10: 823
  • 58 Meunier B, de Visser SP, Shaik S. Chem. Rev. 2004; 104: 3947
  • 59 Horbal L, Marques F, Nadmid S, Mendes MV, Luzhetskyy A. Metab. Eng. 2018; 49: 299
  • 60 Eyles TH, Vior NM, Truman AW. ACS Synth. Biol. 2018; 7: 1211
  • 61 Strohl WR. Nucleic Acids Res. 1992; 20: 961
  • 62 Kuhl M, Rückert C, Gläser L, Beganovic S, Luzhetskyy A, Kalinowski J, Wittmann C. Biotechnol. Bioeng. 2021; 118: 3076
  • 63 Crone WJ. K. University of Cambridge. 2015