Synlett 2023; 34(16): 1925-1929
DOI: 10.1055/s-0041-1738442
letter

Iodine-Catalyzed Simple and Efficient Synthesis of 1,3,5-Triarylbenzenes and 2,3-Dihydrobenzofuran Derivatives under Mild Reaction Conditions

Dong Cheng
,
Xiangzhen Meng
,
Dongmei Li
,
Sunying Jie
,
Yifan Liu
,
Xiaoqing Jiao
We acknowledge the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxgnfx2018035); the Innovation and Entrepreneurship Project of College Students in Anhui Province (DCJX-S17227577), and the Wanwei Technology Innovation Incubation Project.


Abstract

The I2-catalyzed cyclization reaction of chalcones and 2-aryl propionaldehydes or isobutyraldehyde has been developed for the synthesis of 1,3,5-triarylbenzenes and 2,3-dihydrobenzofuran derivatives. This reaction tolerates a wide range of functional groups. Moreover, this method features an inexpensive catalyst and available starting materials.

Supporting Information



Publication History

Received: 23 April 2023

Accepted after revision: 10 May 2023

Article published online:
12 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Alfuth J, Chojnacki J, Połoński T, Herman A, Milewska MJ, Olszewska T. Cryst. Growth Des. 2022; 22: 3493
    • 1b Taddei M, Costantino F, Vivani R, Sabatini S, Lim SH, Cohen SM. Chem. Commun. 2014; 50: 5737
    • 1c Krieck S, Görls HG, Westerhausen M. J. Am. Chem. Soc. 2010; 132: 12492
    • 1d Dash BP, Satapathy R, Gaillard ER, Maguire JA, Hosmane NS. J. Am. Chem. Soc. 2010; 132: 6578
    • 1e Bao C, Lu R, Jin M, Xue P, Tan C, Xu T, Liu G, Zhao Y. Chem. Eur. J. 2006; 12: 3287
    • 1f Shirota Y. J. Mater. Chem. 2005; 15: 75
    • 1g Tour JM. Chem. Rev. 1996; 96: 537
    • 2a Matt Y, Wessely I, Gramespacher L, Tsotsalas M, Bräse S. Eur. J. Org. Chem. 2020; 239
    • 2b Siddaraju Y, Prabhu KR. Org. Biomol. Chem. 2015; 13: 6749
    • 2c Wang Q, Zhang C, Noll BC, Long H, Jin Y, Zhang W. Angew. Chem. Int. Ed. 2014; 53: 10663
    • 2d Khotina IA, Consonni R, Kushakova NS, Porzio W, Giovanella U, Kovalev AI, Babushkina MA, Peregudov AS, Destri S. Eur. Polym. J. 2013; 49: 4224
    • 3a Xiao X, Luo J, Gan Z, Jiang W, Tang Q. RSC Adv. 2020; 10: 12113
    • 3b Phatangare K, Padalkar V, Mhatre D, Patil K, Chaskar A. Synth. Commun. 2009; 39: 4117
    • 3c Wagh GD, Akamanchi KG. Tetrahedron Lett. 2017; 58: 3032
    • 3d Han J, Guo X, Liu Y, Fu Y, Yan R, Chen B. Adv. Synth. Catal. 2017; 359: 2676
    • 3e Zhang X, Wang Z, Xu K, Feng Y, Zhao W, Xu X, Yan Y, Yi W. Green. Chem. 2016; 18: 2313
    • 3f Boroujeni MB, Hashemzadeh A, Faroughi M.-T, Shaabani A, Amini MM. RSC Adv. 2016; 6: 100195
    • 3g Jing XB, Xu F, Zhu QH, Ren XF, Yan CG, Wang L, Wang JR. Synth. Commun. 2006; 35: 3167
    • 3h Sato T, Ono F, Ishikura Y, Tada Y, Endo M. Synlett 2008; 2365
    • 4a Yang K, Wang P, Sun ZY, Guo M, Zhao W, Tang X, Wang G. Org. Lett. 2021; 23: 3933
    • 4b Galiana-Cameo M, Passarelli V, Pérez-Torrente JJ, Di Giuseppe A. Eur. J. Inorg. Chem. 2021; 2947
    • 4c Doll JS, Eichelmann R, Hertwig LE, Bender T, Kohler VJ, Bill E, Wadepohl H. ACS Catal. 2021; 11: 5593
    • 4d Gawali SS, Gunanathan C. J. Organomet. Chem. 2019; 881: 139
    • 4e Chakraborty U, Demeshko S, Meyer F, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2019; 58: 3466
    • 4f Xu YL, Pan YM, Wu Q, Wang HS, Liu PZ. J. Org. Chem. 2011; 76: 8472
    • 4g Perrone S, Bona F, Troisi L. Tetrahedron 2011; 67: 7386
    • 5a Reimann S, Ehlers P, Sharif M, Spannenberg A, Langer P. Tetrahedron 2016; 72: 1083
    • 5b Isfahani AL, Mohammadpoor-Baltork I, Mirkhani V, Khosropour AR, Moghadam M, Tangestaninejad S, Kia R. Adv. Synth. Catal. 2013; 355: 957
    • 5c Xu X.-H, Azuma A, Kusuda A, Tokunaga E, Shibata N. Eur. J. Org. Chem. 2012; 1504
    • 5d Pena MA, Perez I, Perez Sestelo J, Sarandeses LA. Chem. Commun. 2002; 2246
    • 5e Córsico EF, Rossi RA. Synlett 2000; 230
    • 5f Zhao F, Zhang Y.-F, Wen J, Shi Z.-J, Yu D.-G, Wei J.-B, Xi Z. Org. Lett. 2013; 15: 3230
    • 6a Saha A, Wu C.-M, Peng R, Koodali R, Banerjee S. Eur. J. Org. Chem. 2019; 104
    • 6b Zhang CL, Zhang ZF, Xia ZH, Han YF, Ye S. J. Org. Chem. 2018; 83: 12507
    • 6c Kim TY, Kim HS, Lee KY, Kim JN. Bull. Korean Chem. Soc. 1999; 20: 1255
    • 6d Kim TY, Kim HS, Lee KY, Kim JN. Bull. Korean Chem. Soc. 2000; 21: 521
    • 6e Zhang CL, Ye S. Org. Lett. 2016; 18: 6408
    • 6f Deng K, Huai QY, Shen ZL, Li HJ, Liu C, Wu YC. Org. Lett. 2015; 17: 1473
  • 7 Sarkar D, Ghosh MK. Tetrahedron Lett. 2017; 58: 4336
  • 8 Chen CY, Weisel M. Synlett 2013; 24: 189
    • 9a Trost BM, Thiel OR, Tsui H.-C. J. Am. Chem. Soc. 2003; 125: 13155
    • 9b Funayama S, Ishibashi M, Komiyama K, Omura S. J. Org. Chem. 1990; 55: 1132
    • 10a Fang Z, Zhang Y, Guo Y, Jin Q, Zhu H, Xiu H, Liu Z, Wang Y. New. J. Chem. 2022; 46: 1812
    • 10b Zhou S, Cai B, Hu C, Cheng X, Li L, Xuan J. Chin. Chem. Lett. 2021; 32: 2577
    • 10c Jing ZR, Liang DD, Tian JM, Zhang FM, Tu YQ. Org. Lett. 2021; 23: 1258
    • 10d Tian WF, Zhu Y, He YQ, Wang M, Song XR, Bai J, Xiao Q. Adv. Synth. Catal. 2020; 363: 730
    • 10e Sheppard TD. J. Chem. Res. 2011; 377
    • 10f Wu C, Cheng H.-G, Chen R, Chen H, Liu Z.-S, Zhang J, Zhang Y, Zhu Y, Geng Z, Zhou Q. Org. Chem. Front. 2018; 5: 2533
  • 11 General Procedure for the Synthesis of 1,3,5-Triarylbenzenes Chalcones 1 (0.5 mmol), 2-phenylpropanal 2 (5.0 mL), and I2 (38.1 mg, 0.25 mmol) were loaded into a 10 mL sealed tube. The reaction mixture was stirred at 110 ℃. After completion, the reaction was quenched by the addition of saturated aqueous Na2S2O3 (15 mL) and extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed with H2O (20 mL) and brine (20 mL), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) using PE/dichloromethane to give the product. 5′-Phenyl-1,1′:3′,1′′-terphenyl (3a) White solid; 1H NMR (500 MHz, CDCl3): δ = 7.79 (s, 3 H), 7.74–7.67 (m, 6 H), 7.48 (t, J = 7.6 Hz, 6 H), 7.44–7.32 (m, 3 H). 13C NMR (126 MHz, CDCl3): δ = 142.4, 141.2, 128.9, 127.6, 127.4, 125.2.
  • 12 Chalcones 1 (0.5 mmol), isobutyraldehyde 2 (5.0 mL), and I2 (63.3 mg, 0.25 mmol) were loaded into a 20 mL sealed tube. The reaction mixture was stirred at 100 ℃ for 12 h. After completion, the reaction was quenched by the addition of saturated aqueous Na2S2O3 (15 mL) and extracted with EtOAc (3 × 10 mL). The combined organic extracts were washed with H2O (20 mL) and brine (20 mL), dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (200–300 mesh) using PE/Et2O to give the product. 2-Isopropyl-3,3-dimethyl-4,6-diphenyl-2,3-dihydrobenzofuran (4a) White solid; mp 157–163 ℃. 1H NMR (400 MHz, CDCl3): δ = 7.44–7.36 (m, 10 H), 6.66 (s, 1 H), 3.92 (d, J = 6.4 Hz, 1 H), 2.28 (s, 3 H), 2.21‒2.15 (m, 1 H), 1.25 (s, 3 H),1.22 (d, J = 4.4 Hz, 3 H), 1.17 (s, 3 H), 1.09 (d, J = 4.4 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.0, 141.4, 141.1, 140.8, 136.7, 132.9, 129.7, 129.5, 128.0, 127.5, 127.0, 126.7, 124.5, 116.5, 97.4, 45.5, 29.2, 27.4, 22.7, 20.7, 20.0, 12.9. IR (thin film): 3054, 3032, 2976, 2896, 1568, 1474, 1392, 985, 763. HRMS (ESI): m/z calcd for C26H29O [M + H]+: 357.2213; found: 357.2207.
  • 13 CCDC 22232941 (4b) and CCDC 2232940 (4i) contain the supplementary crystallographic data for this paper. These data can be obtained free charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.