Synlett 2012(6): 925-929  
DOI: 10.1055/s-0031-1290607
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 2-Aryl-Substituted Chromans by Intramolecular C-O Bond Formation

Yu Wang, Robert Franzén*
Department of Chemistry and Bioengineering, Tampere University of Technology, Korkeakoulunkatu 8, 33101 Tampere, Finland
Fax: +358(3)31152108; e-Mail: robert.franzen@tut.fi;
Weitere Informationen

Publikationsverlauf

Received 30 December 2011
Publikationsdatum:
15. März 2012 (online)

Abstract

A synthetic route for the preparation of 2-aryl-substituted chromans from commercially available starting materials and utilizing either a palladium- or copper-catalyzed intramolecular cyclization of aryl bromides is described. Chromans with stereocontrol at C-2 can thus be obtained via a palladium-catalyzed asymmetric allylic etherification procedure utilizing a chiral indole-phosphine oxazoline (IndPHOX) ligand.

    References and Notes

  • 1a Chemistry of Heterocyclic Compounds: Chromans and Tocopherols   Vol. 36:  Ellis GP. Lockhart IM. Wiley; New York: 1981. 
  • 1b Saengchantara ST. Wallace TW. Nat. Prod. Rep.  1986,  3:  465 
  • 2 Bauer DJ. Selway JWT. Batchelor JF. Tisdale M. Caldwell IC. Young DA. Nature (London)  1981,  292:  369 
  • 3 Efange SMN. Tu Z. von Hohenberg K. Francesconi L. Howell RC. Rampersad MV. Todaro LJ. Papke RL. Kung MP. J. Med. Chem.  2001,  44:  4704 
  • For some recent examples of the racemic synthesis of chromans, see:
  • 4a Sugimoto H. Nakamura S. Ohwada T. Adv. Synth. Catal.  2007,  349:  669 
  • 4b Yamamoto Y. Itonaga K. Org. Lett.  2009,  11:  717 
  • 4c Batsomboon P. Phakhodee W. Ruchirawat S. Ploypradith P. J. Org. Chem.  2009,  74:  4009 
  • 4d Radomkit S. Sarnpitak P. Tummatorn J. Batsomboon P. Ruchirawat S. Ploypradith P. Tetrahedron  2011,  67:  3904 
  • For some recent examples of the asymmetric synthesis of chromans, see:
  • 5a Hernandez-Torres G. Carreno MC. Urbano A. Colobert F. Eur. J. Org. Chem.  2011,  20-21:  3864 
  • 5b Valla C. Baeza A. Menges F. Pfaltz A. Synlett  2008,  3167 
  • 5c Chandrasekhar S. Reddy MV. Tetrahedron  2000,  56:  6339 
  • 5d Hodgetts KJ. Tetrahedron  2005,  61:  6860 
  • 6 For a recent review on the asymmetric synthesis of chromans, see: Shen HC. Tetrahedron  2009,  65:  3931 
  • For some selected examples, see:
  • 7a Neogi A. Majhi TP. Achari B. Chattopadhyay P. Eur. J. Org. Chem.  2008,  2:  330 
  • 7b Kuwabe S. Torraca KE. Buchwald SL. J. Am. Chem. Soc.  2001,  123:  12202 
  • 7c Shelby Q. Kataoka N. Mann G. Hartwig J. J. Am. Chem. Soc.  2000,  122:  10718 
  • 7d Torraca KE. Kuwabe SI. Buchwald SL. J. Am. Chem. Soc.  2000,  122:  12907 
  • For some recent examples, see:
  • 8a Zhao J. Zhao YF. Fu H. Angew. Chem. Int. Ed.  2011,  50:  3769 
  • 8b Niu JJ. Guo PR. Kang JT. Li ZG. Xu JW. Hu SJ. J. Org. Chem.  2009,  74:  5075 
  • 8c Adams H. Gilmore NJ. Jones S. Muldowney MP. von Reuss SH. Vemula R. Org. Lett.  2008,  10:  1457 
  • 8d Fang Y. Li C. J. Org. Chem.  2006,  71:  6427 
  • 9a Xu B. Xue J. Zhu J. Li Y. Chem. Lett.  2008,  37:  202 
  • 9b Kataoka N. Shelby Q. Stambuli JP. Hartwig JF.
    J. Org. Chem.  2002,  67:  5553 
  • 9c Palucki M. Wolfe JP. Buchwald SL. J. Am. Chem. Soc.  1996,  118:  10333 
  • 10 Gan Y. Spencer TA. J. Org. Chem.  2006,  71:  5870 
  • 13 Fagan PJ. Hauptman E. Shapiro R. Casalnuvo A.
    J. Am. Chem. Soc.  2000,  122:  5043 
  • 15a Wang Y. Hämäläinen A. Tois J. Franzén R. Tetrahedron: Asymmetry  2010,  21:  2376 
  • 15b Wang Y. Vaismaa M. Hämäläinen A. Tois J. Franzén R. Tetrahedron: Asymmetry  2011,  22:  524 
  • 16 Miyabe H. Matsumura A. Moriyama K. Takemoto Y. Org. Lett.  2004,  6:  4631 
  • 20 Yasunori Y. Tomohiko S. Momoko W. Kazunori K. Norio M. Molecules  2011,  16:  5020 
  • For some reviews of reactions for aromatic halides, see:
  • 21a Sadig JER. Willis MC. Synthesis  2011,  1 
  • 21b Surry DS. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  6338 
  • 21c Bubnov YN. Heterocycles  2010,  80:  1 
  • 21d Alonso F. Beletskaya IP. Yus M. Tetrahedron  2008,  64:  3047 
  • 21e Martin R. Buchwald SL. Acc. Chem. Res.  2008,  41:  1461 
  • 21f Bras JL. Muzart J. Chem. Rev.  2011,  111:  1170 
  • 21g Felpin FX. Nassar-Hardy L. Callonnec FL. Fouquet E. Tetrahedron  2011,  67:  2815 
11

General Procedure for Palladium-Catalyzed Intramolecular Cyclization: To a mixture of Pd(OAc)2 (2.4 mg, 0.0105 mmol), ligand 11 (3.1 mg, 0.0105 mmol) and Cs2CO3 (0.17 g, 0.525 mmol), compound 9 (0.35 mmol) in toluene (1.2 mL) was added. After stirring under 90 ˚C for reported time, the reaction mixture was cooled to r.t., diluted with Et2O, and filtered through a pad of celite. The resulting solution was purified by silica gel chromatography (n-hexane-EtOAc, 30:1).

12

The by-product was 1-(furan-2-yl)-3-phenylpropan-1-one, isolated in 22% yield. For the reaction mechanism, see reference 7b.

14

General Procedure for Copper-Catalyzed Intramolecular Cyclization: To a mixture of CuI (2.8 mg, 0.015 mmol), 2-aminopyridine (2.8 mg, 0.03 mmol) and NaOMe (12 mg, 0.225 mmol), compound 9 (0.15 mmol) in diglyme (0.7 mL) was added. After stirring under 100 ˚C for reported time, the reaction mixture was cooled to r.t., quenched with H2O, and extracted with Et2O. The extracts were washed with brine and dried over MgSO4. The solvent was removed in vacuo and the residue was purified by column chromatography (n-hexane-EtOAc, 30:1).

17

The reported ee is the average value of three entries.

18

2-(2-Bromophenyl)chroman (20): [α]D ²0 +71.2 (c = 0.95, CHCl3, 89% ee). ¹H NMR (300 MHz, CDCl3): δ = 7.54-7.61 (m, 2 H), 7.36 (td, J = 7.7, 1.2 Hz, 1 H), 7.10-7.19 (m, 3 H), 6.86-6.93 (m, 2 H), 5.38 (td, J = 10.2, 2.2 Hz, 1 H), 3.00-3.10 (m, 1 H), 2.75-2.83 (m, 1 H), 2.31-2.39 (m, 1 H), 1.85-1.94 (m, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 155.4, 141.3, 133.0, 130.0, 129.4, 128.1, 127.8, 127.7, 122.3, 121.8, 120.8, 117.2, 77.3, 29.1, 25.5. HRMS (ESI+): m/z [M + Na]+ calcd for C15H13ONaBr: 311.0047; found: 311.0015.

19

[α]D ²0 +27.7 (c = 0.5, CH2Cl2, 87% ee).

22

2-([1,1′-Biphenyl]-2-yl)chroman (22): [α]D ²0 -36.5 (c = 0.40, CHCl3, 89% ee). ¹H NMR (300 MHz, CDCl3): δ = 7.64-7.67 (m, 1 H), 7.25-7.46 (m, 8 H), 7.00-7.11 (m, 2 H), 6.80-6.88 (m, 2 H), 5.05-5.10 (m, 1 H), 2.71-2.78 (m, 2 H), 2.01-2.09 (m, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 155.8, 141.2, 141.0, 139.3, 130.4, 129.8, 129.6, 128.5, 128.2, 128.0, 127.5, 127.4, 126.7, 122.2, 120.5, 117.3, 75.2, 30.1, 25.9. HRMS (ESI+): m/z [M + Na]+ calcd for C21H18ONa: 309.1255; found: 309.1263.