Synlett 2012(6): 881-884  
DOI: 10.1055/s-0031-1290604
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Development of a New Nonsugar-Based Strategy for the Synthesis of the Hydroxylated Indolizidinone Skeleton

Leticia M. Pardo, Imanol Tellitu*, Esther Domínguez*
Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
Fax: +34(94)6012748; e-Mail: imanol.tellitu@ehu.es;
Further Information

Publication History

Received 16 December 2011
Publication Date:
28 February 2012 (online)

Abstract

The diastereocontrolled formation of the polyhydroxylated indolizidinone skeleton from linear alkynylamides is achieved by the sequential combination of two key cyclization steps. In particular, a PIFA-mediated intramolecular alkyne amidation reaction affords the 5-alkenoylpyrrolidinone skeleton, whereas a subsequent Ru-catalyzed ring-closing-metathesis protocol assembles the bicyclic indolizidine framework. Manipulation of the ketone carbonyl group, developed in the former cyclization step under controlled reductive conditions, and oxidation of the C6-C7 double bond, generated in the latter one under Upjohn conditions, fix the 6,7,8-trihydroxy groups in a complete diastereoselective manner.

    References and Notes

  • 1a Tellitu I. Serna S. Herrero MT. Moreno I. Domínguez E. SanMartin R. J. Org. Chem.  2007,  72:  1526 
  • 1b Serna S. Tellitu I. Domínguez E. Moreno I. SanMartin R. Org. Lett.  2005,  7:  3073 
  • 2 Tellitu I. Urrejola A. Serna S. Moreno I. Herrero MT. Domínguez E. SanMartin R. Correa A. Eur. J. Org. Chem.  2007,  437 
  • 3 Pardo LM. Tellitu I. Domínguez E. Tetrahedron  2010,  66:  5811 
  • 4 Pardo LM. Tellitu I. Domínguez E. Synthesis  2010,  971 
  • 5a Díaz L. Bujons J. Casas J. Llebaria A. Delgado A. J. Med. Chem.  2010,  53:  5248 
  • 5b Asano N. Nash RJ. Molyneux RJ. Fleet GWJ. Tetrahedron: Asymmetry  2000,  11:  1645 
  • 5c Sinnott ML. Chem. Rev.  1990,  90:  1171 
  • 6a Platt FM. Neises GR. Reinkensmeier G. Townsend MJ. Perry VH. Proia RL. Winchester B. Dwek RA. Butters TD. Science  1997,  276:  428 
  • 6b Nojima H. Kimura I. Chen F.-J. Sugihara Y. Haruno M. Kato A. Asano N. J. Nat. Prod.  1998,  61:  397 
  • 7a Goss PE. Baker MA. Carver JP. Dennis JW. Clin. Cancer Res.  1995,  1:  935 
  • 7b Pili R. Chang J. Partis RA. Mueller RA. Chrest FJ. Passaniti A. Cancer Res.  1995,  55:  2920 
  • 8a De Clercq E. Med. Res. Rev.  2000,  20:  323 
  • 8b Winkler DA. Holan G. J. Med. Chem.  1989,  32:  2084 
  • For reviews on availability, synthesis, and biological evaluation of polyhydroxylated indolizidines, see:
  • 9a Gupta P. Pal APJ. Reddy YS. Vankar YD. Eur. J. Org. Chem.  2011,  1166 
  • 9b El Nemr AE. Tetrahedron  2000,  56:  8579 
  • 9c Burgess K. Henderson I. Tetrahedron  1992,  48:  4045 
  • 9d

    See also ref. 5b.

  • For some recent representative examples, including references therein, see:
  • 10a Kamal A. Vangala SR. Tetrahedron  2011,  67:  1341 
  • 10b Hu X.-G. Bartholomew B. Nash RJ. Wilson FX. Fleet GWJ. Nakagawa S. Kato A. Jia Y.-M. van Well R. Yu C.-Y. Org. Lett.  2010,  12:  2562 
  • 10c Izquierdo I. Tamayo JA. Rodríguez M. Franco F. Lo Re D. Tetrahedron  2008,  64:  7910 
  • 10d Karanjule NS. Markad SD. Shinde VS. Dhavale DD. J. Org. Chem.  2006,  71:  4667 
  • 11a Paolucci C. Mattioli L. J. Org. Chem.  2001,  66:  4787 ; and ref. 9 cited therein
  • 11b Lindsay KB. Pyne SG.
    J. Org. Chem.  2002,  67:  7774 ; and ref. 3 cited therein
  • 11c Carretero JC. Arrayas RG. J. Org. Chem.  1998,  63:  2993 ; and ref. 6 cited therein
  • 12a Zambrano V. Rassu G. Roggio A. Pinna L. Zanardi F. Curti C. Casiraghi G. Battistini L. Org. Biomol. Chem.  2010,  8:  1725 
  • 12b Tian Y.-S. Joo J.-E. Kong B.-S. Pham V.-T. Lee K.-Y. Ham W.-H. J. Org. Chem.  2009,  74:  3962 
  • 12c Alam MA. Kumar A. Vankar YD. Eur. J. Org. Chem.  2008,  4972 
  • 12d Shi G.-F. Li J.-Q. Jiang X.-P. Cheng Y. Tetrahedron  2008,  64:  5005 
  • 12e Abrams JN. Babu RS. Guo H. Le D. Le J. Osbourn JM. O’Doherty GA. J. Org. Chem.  2008,  73:  1935 
  • 12f Guo H. O’Doherty GA. Tetrahedron  2008,  64:  304 
  • 12g Bi J. Aggarwal VK. Chem. Commun.  2008,  120 
  • 12h Ceccon J. Greene AE. Poisson J.-F. Org. Lett.  2006,  8:  4739 
  • 12i Michael JP. Nat. Prod. Rep.  2008,  25:  139 
  • 14 For a useful review on the Sonogashira reaction, see: Chinchilla R. Nájera C. Chem. Rev.  2007,  107:  874 
  • The putative syn stereochemistry of (±)-6 was assumed, but not confirmed, on the basis of some related reports:
  • 15a Yun JM. Sim TB. Hahm HS. Lee WK. Ha H.-J. J. Org. Chem.  2003,  68:  7675 
  • 15b Kim BC. Lee WK. Tetrahedron  1996,  52:  12117 ; to the view of the undesired results in its transformation into (±)-7, in which the tetrahedral carbinol group becomes trigonal, no additional effort to clarify the stereochemical relationships in (±)-6 or (±)-7 was carried out.
  • 16 Grubbs RH. Trnka TM. Ruthenium-Catalyzed Olefin Metathesis, In Ruthenium in Organic Synthesis   Murahashi S. Wiley-VCH; Weinheim: 2004.  p.153-177  
  • 17 Chowdhury S. Roy S. J. Org. Chem.  1997,  62:  199 
  • The development of protecting-group-free syntheses must be a mandatory impulse for all synthetic organic chemists. See, for example:
  • 18a Young IS. Baran PS. Nat. Chem.  2009,  1:  193 
  • 18b Hoffmann RW. Synthesis  2006,  3531 
  • 18c Baran PS. Maimone TJ. Richter JM. Nature (London)  2007,  446:  404 
  • 18d Roulland E. Angew. Chem. Int. Ed.  2011,  50:  1226 ; and references therein
  • 19 For a description of the combined use of several dihydroxylation methods, see: Reddy JS. Rao BV. J. Org. Chem.  2007,  72:  2224 
13

The selection of the E/Z mixture of 3 was made on the basis of economic reasons with respect to both expensive isolated stereoisomers. Moreover, it was anticipated that an E/Z mixture of (±)-6 should render the same compound after the ring-closing-metathesis step. All these compounds (4-6) were prepared as E/Z isomers and no effort to isolate them was attempted.

20

A combination of NOESY, selective COSY, and HMBC experiments were carried out to establish the stereochemical relationships in compounds (±)-12a,b and (±)-13a. From these results, the relative stereochemistry in (±)-11a,b was inferred.

21

Representative Procedure for the PIFA-Mediated Heterocyclization: Synthesis of( rac )- N -Allyl-5-(3-phenylacryloyl)pyrrolidin-2-one [(±)-10]
A solution of alkynylamide 9 (885 mg, 3.7 mmol) in CF3CH2OH (30 mL) was stirred at 0 ˚C, and a solution of PIFA (2.3 g, 5.5 mmol) in 25 mL of the same solvent was added dropwise. The reaction mixture was stirred at that temperature for 2 h. For the workup, aq Na2CO3 (20%, 30 mL) was added, and the mixture was extracted with CH2Cl2 (2 × 40 mL). The combined organic layers were washed with brine, dried over Na2SO4, and the solvent evaporated. Purification of the crude by flash chromatography (EtOAc) gave pyrrolidinone as a chromatographically pure yellowish oil (74%). Following the representative procedure, pyrrolidinone (±)-10 was obtained from 9 (74%) and purified by flash chromatography (EtOAc) as a yellowish oil. ¹H NMR (300 MHz, CDCl3): δ = 7.70 (d, J = 15.8 Hz, 1 H), 7.54-7.39 (m, 5 H), 6.76 (d, J = 15.8 Hz, 1 H), 5.75-5.62 (m, 1 H), 5.15-5.08 (m, 2 H), 4.53-4.41 (m, 2 H), 3.46-3.38 (m, 1 H), 2.48-2.33 (m, 3 H), 2.00-1.93 (m, 1 H) ppm. ¹³C NMR (300 MHz, CDCl3): δ = 197.2, 175.2, 145.2, 133.9, 132.1, 131.2, 129.1, 128.6, 121.4, 118.8, 63.7, 44.5, 29.6, 21.4 ppm. IR: ν = 1692, 1609 (CO) cm. HRMS: m/z calcd for C16H17NO2˙H+: 256.1338; found: 256.1335.
Representative Procedure for the L-Selectride Reductive Step: Synthesis of rac -(5 R ,1′ R )- N -Allyl-5-(1-hydroxy-3-phenylallyl)pyrrolidin-2-one [(±)-11a]
A solution of L-Selectride® (1.8 mL, 1.0 M in THF) was added dropwise to a cold (-78 ˚C) solution of pyrrolidinone (±)-10 (230 mg, 0.9 mmol) in 4.5 mL of the same solvent. After 30 min, the temperature was raised to r.t. and 2 mL of an aq solution of NaOH (10%) was added. The whole mixture was extracted with CH2Cl2 (3 × 10 mL), the combined organic layers were dried over Na2SO4, and the solvent evaporated. Purification of the crude by flash chromatography (EtOAc) gave pyrrolidinone (±)-11a as a chromatographically pure yellowish oil (70%). ¹H NMR (300 MHz, CDCl3): δ = 7.30-7.17 (m, 5 H), 6.59 (d, J = 15.9 Hz, 1 H), 6.10 (dd, J = 15.9, 6.0 Hz, 1 H), 5.72-5.65 (m, 1 H), 5.14 (d, J = 4.5 Hz, 1 H), 5.10 (s, 1 H), 4.39-4.25 (m, 2 H), 3.76-3.64 (m, 2 H), 2.88 (br s, 1 H), 2.36-1.98 (m, 4 H) ppm. ¹³C NMR (300 MHz, CDCl3): δ = 175.9, 136.2, 132.8, 132.3, 128.7, 128.0, 127.5, 126.5, 117.8, 73.4, 61.6, 44.7, 30.2, 20.5 ppm. IR: ν = 3374, 1670 cm. HRMS: m/z calcd for C16H19NO2˙H+: 258.1494; found: 258.1507.
Representative Procedure for the Dihydroxylation Step: Synthesis of rac -(6 S ,7 S ,8 S ,9 R )-6,7,8-Trihydroxyhexahydroindolizidin-3-one [(±)-13a] K2OsO4˙2H2O (7 mg, 0.015 mmol) and N-methyl-morpholine-N-oxide (70 mg, 0.6 mmol) were sequentially added to 2 mL of an acetone-H2O (1:1) solution of indolizidinone (±)-12a (50 mg, 0.3 mmol). The mixture was stirred at r.t. for 18 h, and then filtered through Celite. The volatiles were eliminated, and the residue was column chromatographed (EtOAc) to render trihydroxyindolizi-dinone (±)-13a as a colorless oil (93%). ¹H NMR (300 MHz, MeOD): δ = 5.48 (d, J = 3.7 Hz, 1 H), 3.94-3.64 (m, 3 H), 2.49-2.29 (m, 2 H), 2.11-1.87 (m, 4 H) ppm. ¹³C NMR (300 MHz, MeOD): δ = 177.5, 74.5, 68.2, 65.0, 57.2, 35.2, 32.5, 19.6 ppm. IR: ν = 3408, 1660 cm. HRMS: m/z calcd for C8H13NO4˙H+: 188.0923; found: 188.0915.