Synlett 2010(10): 1469-1472  
DOI: 10.1055/s-0029-1219934
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Unprecedented and Concise Method for the Synthesis of 1,3-Thiazino-[3,4a][1,3]benzimidazoles via a Three-Component Reaction

Abdolali Alizadeh*, Zohreh Noaparast, Hamideh Sabahnoo, Nasrin Zohreh
Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, 1411713116 Tehran, Iran
Fax: +98(21)88006544; e-Mail: abdol_alizad@yahoo.com; e-Mail: aalizadeh@modares.ac.ir;
Further Information

Publication History

Received 15 February 2010
Publication Date:
10 May 2010 (online)

Abstract

For the first time, a novel, simple, and highly efficient synthesis of N-aryl-N-[1,3]thiazino[3,4a][1,3]benzimidazol-1-ylidenamines is presented. The one-pot reaction of o-phenylenediamine, aryl isothiocyanate, and methyl acetylenecarboxylate proceeds in toluene-dichloromethane without any catalyst under reflux conditions to produce the title compounds in 60-70% yield. From a mechanistic point of view, the reaction is proposed to occur via two cyclizations and four heteroatom-carbon bond formations.

    References and Notes

  • 1a Patel HS. Patel NP. Orient. J. Chem.  1997,  13:  69 
  • 1b Madkour HMF. Salem MAI. Soliman EA. Mahmoud NFH. Phosphorus, Sulfur Silicon Relat. Elem.  2001,  170:  15 
  • 1c Ingarsal N. Amutha P. Nagarajan S.
    J. Sulfur Chem.  2006,  27:  455 
  • 1d Tozkoparan B. Aktay G. Yeilada E. Farmaco  2002,  57:  145 
  • 2 Barret GC. Kane VV. Lowe G. J. Chem. Soc.  1964,  783 
  • 3 Patani GA. LaVoie E. J. Chem. Rev.  1996,  96:  3147 
  • 4 Schmidt RR. Synthesis  1972,  333 
  • 5 Bernalte Garc A. Garc Barros FJ. Higes Rolando FJ. Luna Giles F. Pedrero Mar R. J. Inorg. Biochem.  2004,  98:  15 
  • 6a Orjales A. Mosquera R. Labeaga L. Rodes R.
    J. Med. Chem.  1997,  40:  586 
  • 6b Grimmett MR. Comprehensive Heterocyclic Chemistry II   Vol. 3:  Katritzky AR. Rees CW. Scriven EF. Elsevier; Oxford: 1996.  p.77 
  • 7 Labanauskas LK. Brukstus AB. Gaidelis PG. Buchinskaite VA. Udrenaite EB. Dauksas VK. Pharm. Chem. J.  2000,  34:  353 
  • 8a Ishida T. Suzuki T. Hirashima S. Mizutani K. Yoshida A. Ando I. Ikeda S. Adachi T. Hashimoto H. Bioorg. Med. Chem. Lett.  2006,  16:  1859 
  • 8b Garuti L. Roberti M. Gentilomi G. Farmaco  2001,  56:  815 
  • 9 Iemura R. Kawashima T. Fukuda T. Ito K. Tsukamoto G. J. Med. Chem.  1986,  29:  1178 
  • 10a Venkatesan P. J. Antimicrob. Chemother.  1998,  41:  145 
  • 10b Pawar NS. Dalal DS. Shimpi SR. Mahulikar PP. Eur. J. Pharm. Sci.  2004,  21:  115 
  • 11 Valdez J. Cedillo R. Hernandez-Campos A. Yepez L. Hernandez-Luis F. Navarrete-Vazquez G. Tapia A. Cortes R. Hernandez M. Castillo R. Bioorg. Med. Chem. Lett.  2002,  12:  2221 
  • 12 Mann J. Baron A. Opoku-Boahen Y. Johansson E. Parkinson G. Kelland LR. Neidle S. J. Med. Chem.  2001,  44:  138 
  • 13 Boiani M. Gonzalez M. Mini-Rev. Med. Chem.  2005,  5:  409 
  • 14 Mederski WKR. Dorsch D. Anzali S. Gleitz J. Cezanne B. Tsaklakidis C. Bioorg. Med. Chem. Lett.  2004,  14:  3763 
  • 15 Kubo K. Kohara Y. Yoshimura Y. Inada Y. Shibouta Y. Furukawa Y. Kato T. Nishikawa K. Naka T. J. Med. Chem.  1993,  36:  2343 
  • 16a Cole ER. Crank G. Salam-Sheikh A. J. Agric. Food Chem.  1974,  22:  918 
  • 16b Ayhan-Kilcigil G. Kus C. Çoban T. Can-Eke B. Ozbey S. Iscan M. J. Enzyme Inhib. Med. Chem.  2005,  20:  503 
  • 17a Kai H. Morioka Y. Koriyama Y. Okamoto K. Hasegawa Y. Hattori M. Koike K. Chiba H. Shinohara S. Iwamoto Y. Takahashi K. Tanimoto N. Bioorg. Med. Chem. Lett.  2008,  18:  6444 
  • 17b Leflemme N. Dallemagne P. Rault S. Tetrahedron Lett.  2004,  45:  1503 
  • 17c Noshio T. Konno Y. Ori M. Sakamoto M. Eur. J. Org. Chem.  2001,  3533 
  • 17d Tozkoparan B. Aktay G. Yesilada E. Farmaco  2002,  57:  145 
  • 17e Lamberth C. Querniard F. Tetrahedron Lett.  2008,  49:  2286 
  • 17f Ryabukhin SV. Plaskon AS. Ostapchuk EN. Volochnyuk DM. Shishkin OV. Shivanyuk AN. Tolmachev AA. Org. Lett.  2007,  9:  4215 
  • 18a Middleton RW. Wibberley DG. J. Heterocycl. Chem.  1980,  17:  1757 
  • 18b Fairley TA. Tidwell RR. Donkor I. Naiman NA. Ohemeng KA. Lombardy RJ. Bentley JA. Cory M. J. Med. Chem.  1993,  36:  1746 
  • 18c Fujiok a H. Murai K. Ohba Y. Hiramatsu A. Kita Y. Tetrahedron Lett.  2005,  46:  2197 
  • 18d Peddibhotla S. Tepe JJ. Synthesis  2003,  1433 
  • 18e Huh DH. Ryu H. Kim YG. Tetrahedron  2004,  60:  9857 
  • 18f Mitchell JM. Finney NS. Tetrahedron Lett.  2000,  41:  8431 
  • 18g You SL. Kelly JW. Org. Lett.  2004,  6:  1681 ; and references cited there
  • 19a Alizadeh A. Babaki M. Zohreh N. Rezvanian A. Synthesis  2008,  3793 
  • 19b Alizadeh A. Hosseinpour R. Rostamnia S. Synthesis  2008,  3742 
  • 19c Alizadeh A. Zohreh N. Zhu LG. Tetrahedron  2009,  65:  2684 
  • 21a King FD. Tetrahedron  2007,  63:  2053 
  • 21b Allin SM. James SL. Martin WP. Smith TAD. Tetrahedron Lett.  2001,  42:  3943 
20

To a magnetically stirred 5 mL flask containing o-pheny-lenediamine (0.11 g, 1 mmol) and CH2Cl2 (2 mL as solvent) was added phenyl isothiocyanate (0.14 g, 1 mmol). After 15 min, methyl acetylenedicarboxylate (0.08 g, 1 mmol) in toluene (5 mL) was added to the reaction mixture and stirring continued under reflux. After completion of the reaction (ca. 10 h; monitoring by TLC based on the presence of intermediate 5), the solvent was removed under reduced pressure, and the residue was washed with cold toluene, Et2O, and EtOAc and crystallized from CH2Cl2.
Compound 4a: yield 0.19 g (70%); white powder; mp 220 ˚C (dec.). IR (KBr): 1685 (C=N), 1663 (C=N), 1638 (C=C), 1589 and 1527 and 1473 and (C=C Ar). ¹H NMR (500.13 MHz, CDCl3): δH = 6.32 (1 H, d, ³ J H,H = 7.7 Hz, SCHCH), 7.31 (1 H, t, ³ J H,H = 7.5, CH of Ar), 7.35 (1 H, t, ³ J H,H = 7.2 Hz, CH of Ar), 7.44 (2 H, d, ³ J H,H = 7.6 Hz, 2 CH of Ar), 7.52 (1 H, t, ³ J H,H = 7.4 Hz, CH of Ar), 7.55 (1 H, d, ³ J H,H = 7.8 Hz, CH of Ar), 7.60 (2 H, t, ³ J H,H = 7.5 Hz, 2 CH of Ar), 7.66 (1 H, d, ³ J H,H = 7.9 Hz, CH of Ar), 8.17 (1 H, d, ³ J H,H = 7.7 Hz, SCHCH). ¹³C NMR (125.75 MHz, CDCl3): δC = 106.01 (SCH=CH), 108.49 (CH of Ar), 119.62 (CH of Ar), 122.18 (CH of Ar), 124.90 (CH of Ar), 128.22 (2 CH of Ar), 129.17 (C ipso of Ar), 129.47 (CH of Ar), 129.86 (2 CH of Ar), 132.52 (SCHCH), 134.74 (CH=CHC), 142.41 (C ipso of Ar), 148 (C ipso of Ar), 160.38 (N=CS). MS: m/z (%) = 279 (7) [M+ + 2], 277 (6) [M+], 260 (100), 250 (10), 207 (9), 185 (9), 167 (18), 149 (49), 130 (16), 118 (9), 105 (92), 91 (55), 77 (90), 57 (48). 43 (53). Anal. Calcd for C16H11N3S (277.34): C, 69.29; H, 4; N, 15.15. Found: C, 69.32; H, 4.2; N, 15.13.
Compunds 4e and 4e′: yield 0.20 g (67%); white powder; mp 230 ˚C (dec.). IR (KBr): 1676 (2 C=N), 1635 (2 C=N), 1591 (2 C=C), 1533 and 1509 and 1464 and (Ar). ¹H NMR (500.13 MHz, CDCl3): δH = 2.43 (6 H, s, 2 Me), 2.45 (3 H, s, Me), 2.51 (3 H, s, Me), 6.27 (1 H, d, ³ J H,H = 7.7, SCHCH), 6.28 (1 H, d, ³ J H,H = 7.8 Hz, SCHCH), 7.11 (1 H, d, ³ J H,H = 7.9 Hz, CH of Ar), 7.15 (1 H, d,³ J H,H = 8.2 Hz, CH of Ar), 7.32 (4 H, d, ³ J H,H = 7.3, 4 CH of Ar), 7.34 (1 H, s, CH of Ar), 7.38 (4 H, d,³ J H,H = 8.1 Hz, 4 CH of Ar), 7.41 (1 H, d, ³ J H,H = 8.2 Hz, CH of Ar), 7.45 (1 H, s, CH of Ar), 7.54 (1 H, d, ³ J H,H = 8.2 Hz, CH of Ar), 8.11 (1 H, d, ³ J H,H = 7.7Hz, SCHCH), 8.12 (1 H, d, ³ J H,H = 7.8 Hz, SCHCH). ¹³C NMR (125.7 MHz, CDCl3): δC = 21.37 (2 Me), 21.71 (Me), 21.75 (Me), 105.62, and 105.79 (2 SCH=CH), 108.01 and 108.59 (2 CH of Ar), 119.17 and 119.65 (2 CH of Ar), 123.28 (2 CH of Ar), 126.14 (2 CH of Ar), 127.20 (C ipso of Ar), 127.87 (2 CH of Ar), 128.90 (C ipso of Ar), 129.30 (C ipso of Ar), 130.10 (C ipso of Ar), 130.60 (2 CH of Ar), 132.16 and 132.23 (2 CH of Ar), 132.40 and 132.53 (2 SCHCH), 134.83 (2 CH=CHC), 139.43 (2 C ipso of Ar), 140.37 and 142.41 (2 C ipso of Ar), 148.04 (2 C ipso of Ar), 160.38 (2 N=CS). MS: m/z (%) = 290 (22), 289 (100), 274 (6), 260 (10), 246 (6), 224 (4), 208 (2), 167 (16), 149 (42), 129 (5), 111 (7), 97 (13), 83 (15), 57 (23), 43 (17). Anal. Calcd for C18H15N3S (305. 40): C, 70.79; H, 4.95; N, 13.76. Found: C, 70.77; H, 4.97; N, 13.74.