Synlett 2024; 35(07): 811-815
DOI: 10.1055/a-2179-6438
letter

Ruthenium(II)-Catalyzed Selective C–H Bond Activation of Biindoles and Coupling with Sulfoxonium: An Efficient Access to Pyrido[1,2-a:4,3-b′]diindole frameworks

Ramanna Jatoth
a   Department of Chemistry, Osmania University, Hyderabad-500 007, India
,
Kishan Gugulothu
a   Department of Chemistry, Osmania University, Hyderabad-500 007, India
,
Rasika Meloth Valappil
b   Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
,
Nithya Nelson
b   Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
,
K. Shiva Kumar
a   Department of Chemistry, Osmania University, Hyderabad-500 007, India
b   Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
› Author Affiliations
K.S.K. thanks the University Grants Commission (UGC), New Delhi, for a faculty position under FRP. We also thank CSIR 02(0481)/23/EMR-II for funding this project.


Abstract

A ruthenium-catalyzed selective C–H functionalization/annulation cascade reaction of biindoles and sulfoxonium ylides has been developed. The reaction selectively provides pyrido[1,2-a:4,3-b′]diindole (5H-benzo[2,3]indolizino[7,8-b]indole) derivatives in good yields. A possible mechanism for the reaction pathway is proposed. More importantly, the present study provides a useful method for the construction of pyrido[1,2-a:4,3-b′]diindole frameworks.

Supporting Information



Publication History

Received: 25 May 2023

Accepted after revision: 21 September 2023

Accepted Manuscript online:
21 September 2023

Article published online:
30 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Ichake SS, Villuri BK, Reddy SR, Kavala V, Yao C.-F. Org. Lett. 2019; 21: 2256
    • 1b Song L, Zhang X, Tang X, Van Meervelt L, Van der Eycken J, Harvey JN, Van der Eycken EV. Chem. Sci. 2020; 11: 11562
    • 1c Cui X.-F, Qiao X, Wang H.-S, Huang G.-S. J. Org. Chem. 2020; 85: 13517
    • 1d Chowdhury D, Dana S, Maity S, Baidya M. Org. Lett. 2020; 22: 6760

      For selected reviews, see:
    • 2a Rej S, Chatani N. Angew. Chem. Int. Ed. 2019; 58: 8304
    • 2b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2009; 110: 624
    • 2c Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 2d Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2011; 45: 814
    • 3a Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 3b Ouyang W, Rao J, Li Y, Liu X, Huo Y, Chen Q, Li X. Adv. Synth. Catal. 2020; 362: 5576
    • 3c Song L, Van der Eycken EV. Chem. Eur. J. 2021; 27: 121
    • 3d Kumar KS, Rajesham B, Kumar NP, Ramulu MS, Dandela R. ChemistrySelect 2018; 3: 4581
    • 4a Zhidkov ME, Sidorova MA, Lyakhova IA. Tetrahedron Lett. 2018; 59: 1417
    • 4b Zhidkov ME, Baranova OV, Kravchenko NS, Dubovitskii SV. Tetrahedron Lett. 2010; 51: 6498
    • 4c Bharate SB, Manda S, Mupparapu N, Battini N, Vishwakarma RA. Mini-Rev. Med. Chem. 2012; 12: 650
    • 5a Roll DM, Ireland CM, Lu HS. M, Clardy J. J. Org. Chem. 1988; 53: 3276
    • 5b Jiménez C, Crews P. Tetrahedron 1991; 47: 2097
    • 6a Segraves NL, Robinson SJ, Garcia D, Said SA, Fu X, Schmitz FJ, Pietraszkiewicz H, Valeriote FA, Crews P. J. Nat. Prod. 2004; 67: 783
    • 6b Lu Z, Ding Y, Li X.-C, Djigbenou DR, Grimberg BT, Ferreira D, Ireland CM, Van Wagoner RM. Bioorg. Med. Chem. 2011; 19: 6604
    • 6c Charan RD, McKee TC, Gustafson KR, Pannell LK, Boyd MR. Tetrahedron Lett. 2002; 43: 5201
  • 7 Manda S, Sharma S, Wani A, Joshi P, Kumar V, Guru SK, Bhatate SS, Bhushan S, Vishwakarma RA, Kumar A, Bharate SB. Eur. J. Med. Chem. 2016; 107: 1
    • 8a Avadhani A, Iniyavan P, Acharya A, Gautam V, Chakrabarti S, Ila H. ACS Omega 2019; 4: 17910
    • 8b Zhidkov ME, Kaune M, Kantemirov AV, Smirnova PA, Spirin PV, Sidorova MA, Stadnik SA, Shyrokova EY, Kaluzhny DN, Tryapkin OA, Busenbender T, Hauschild J, Rohlfing T, Prassolov VS, Bokemeyer C, Graefen M, von Amsberg G, Dyshlovoy SA. Mar. Drugs 2022; 20: 185
  • 9 Bharate SB, Manda S, Joshi P, Singh B, Vishwakarma RA. Med. Chem. Commun. 2012; 3: 1098
    • 10a Gribble GW, Pelcman B. J. Org. Chem. 1992; 57: 3636
    • 10b Rocca P, Marsais F, Godart A, Quéguiner G. Tetrahedron Lett. 1993; 34: 7917
    • 10c Molina P, Fresneda M, García-Zafra S, Almendros P. Tetrahedron Lett. 1994; 35: 8851
    • 10d Radchenko OS, Novikov VL, Elyakov GB. Tetrahedron Lett. 1997; 38: 5339
    • 10e Waldmann H, Eberhardt L, Wittstein K, Kumar K. Chem. Commun. 2010; 46: 4622
    • 10f Zhu Y.-P, Liu M.-C, Cai Q, Jia F.-C, Wu A.-X. Chem. Eur. J. 2013; 19: 10132
    • 10g Zhidkov ME, Kaminskii VA. Tetrahedron Lett. 2013; 54: 3530
    • 10h Battini N, Padala AK, Mupparapu N, Vishwakarma RA, Ahmed QN. RSC Adv. 2014; 4: 26258
    • 12a Shi X, Wang R, Zeng X, Zhang Y, Hu H, Xie C, Wang M. Adv. Synth. Catal. 2018; 360: 4049
    • 12b Xie H, Lan J, Gui J, Chen F, Jiang H, Zeng W. Adv. Synth. Catal. 2018; 360: 3534
    • 12c Neuhaus JD, Bauer A, Pinto A, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 16215
    • 12d Liang Y.-F, Yang L, Rogge T, Ackermann L. Chem. Eur. J. 2018; 24: 16548
    • 12e Hu P, Zhang Y, Liu B, Li X. Org. Chem. Front. 2018; 5: 3263
    • 12f Ma W, Tan Y, Wang Y, Li Z, Li Z, Gu L, Mei R, Cheng A. Org. Lett. 2021; 23: 6200
    • 13a Wu C, Zhou J, He G, Li H, Yang Q, Wang R, Zhou Y, Liu H. Org. Chem. Front. 2019; 6: 1183
    • 13b Karishma P, Agarwal DS, Laha B, Mandal SK, Sakhuja R. Chem. Asian J. 2019; 14: 4274
    • 13c Chen Z, Ding Z, Chen T, Meng L, Wang G. Org. Biomol. Chem. 2020; 18: 8486
    • 13d Cui X.-F, Ban Z.-H, Tian W.-F, Hu F.-P, Zhou X.-Q, Ma H.-J, Zhan Z.-Z, Huang G.-S. Org. Biomol. Chem. 2019; 17: 240
    • 13e Chen G, Zhang X, Jia R, Li B, Fan X. Adv. Synth. Catal. 2018; 360: 3781
    • 14a Naikawadi PK, Mucherla L, Dandela R, Sambari M, Kumar KS. Adv. Synth. Catal. 2021; 363: 3796
    • 14b Kumar KS, Meesa SR, Naikawadi PK. Org. Lett. 2018; 20: 6079
    • 14c Kumar KS, Naikawadi PK, Jatoth R, Dandela R. Org. Biomol. Chem. 2019; 17: 7320
    • 14d Gugulothu K, Jatoth R, Edukondalu P, Vanga A, Matta R, Kumar KS. Org. Biomol. Chem. 2023; 21: 2816
  • 15 Pyridodiindoles 3aa–ed; General Procedure An oven dried Schlenk tube equipped with a magnetic stirrer bar was charged with the appropriate diindole 1 (0.43 mmol), sulfoxonium ylide 2 (0.86 mmol) and DCE (2 mL). [RuCl2(p-cymene)]2 (10 mol%), AgSbF6 (20 mol%), and PivOH (1 equiv) were added, and Schlenk tube was closed with a N2-filled balloon. The resulting mixture was heated at 100 °C overnight. The mixture was then cooled to r.t., diluted with H2O (10 mL), and extracted with EtOAc (2 × 20 mL). The organic layers were collected, washed with brine, dried (Na2SO4), filtered, and concentrated under vacuum to give a crude product that was further purified by flash column chromatography [silica gel (100–200 mesh), hexane–EtOAc]. 7-Phenyl-5H-benzo[2,3]indolizino[7,8-b]indole (3aa) Brown solid; yield: 83%; mp = 175–177 °C; Rf = 0.6 (40% EtOAc–PE). 1H NMR (400 MHz, CDCl3): δ = 8.71 (s, 1 H), 8.27 (s, 1 H), 8.17 (d, J = 7.6 Hz, 1 H), 7.58–7.50 (m, 2 H), 7.68–7.66 (m, 4 H), 7.45 (t, J = 7.6 Hz, 1 H), 7.40–7.31 (m, 3 H), 7.16 (s, 1 H), 7.02 (t, J = 7.4 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 141.5, 139.0, 138.8, 138.7, 136.4, 134.3, 129.3 (2 C), 128.2 (3 C), 127.3, 124.5, 123.7, 121.8, 121.2, 120.3, 119.7, 119.4, 113.8, 110.7, 110.4, 106.0, 105.0. HRMS: (ESI+): m/z [M + H]+ calcd C24H17N2: 333.1386; found: 333.1384.