Synlett 2023; 34(19): 2304-2308
DOI: 10.1055/a-2147-9454
letter

Total Synthesis and Structure Revision of Saniculamoid D

Koichiro Ota
,
Kazuo Kamaike
,


Abstract

We present the first asymmetric total synthesis of the norsesquiterpenoid saniculamoid D, from a previously known pure chiral imide, with a longest linear sequence of seven steps. The key highlight of the synthesis is the formation of the bicyclo[3.1.0]hexane moiety through the Julia–Kocienski olefination and Hodgson cyclopropanation. Notably, the NMR spectra and specific rotation value of the synthesized structure did not agree with those of the natural compound. However, a meticulous comparison of the data prompted the reassignment of the correct structure of saniculamoid D, which now corresponds to the structure initially proposed for chromolaevanedione.

Supporting Information



Publication History

Received: 20 July 2023

Accepted after revision: 03 August 2023

Accepted Manuscript online:
03 August 2023

Article published online:
15 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Li XS, Zhou XJ, Zhang XJ, Su J, Li XJ, Yan YM, Zheng YT, Li Y, Yang LM, Cheng YX. J. Nat. Prod. 2011; 74: 1521
  • 2 Misra LN, Jakupovic J, Bohlmann F. Tetrahedron 1985; 41: 5353
    • 3a Xue Y, Zhang C, Wu Z, Zhang P, Zhao M, Jiang Y, Tu P. J. Chin. Pharm. Sci. 2018; 27: 576
    • 3b Harneti D, Permatasari AA, Anisshabira A, Naini AA, Nurlelasari Nurlelasari, Mayanti T, Maharani R, Safari A, Hidayat AT, Farabi K, Supratman U, Azmi MN, Shiono Y. Nat. Prod. Sci. 2022; 28: 6
    • 3c Fehlberg I, Ribeiro PR, dos Santos IB. F, dos Santos II. P, Guedes ML. S, Ferraz CG, Cruz FG. Phytochem. Lett. 2022; 48: 5
    • 4a Zhang HJ, Hung NV, Cuong NM, Soejarto DD, Pezzuto JM, Fong HH. S, Tan GT. Planta Med. 2005; 71: 452
    • 4b Xie WD, Niu YF, Lai PX, Row KH. Chem. Pharm. Bull. 2010; 58: 991
    • 4c Moriyasu M, Takeuchi S, Ichimaru M, Nakatani N, Nishiyama Y, Kato A, Mathenge SG, Juma FD, ChaloMutiso PB. J. Nat. Med. 2012; 66: 453
    • 5a Hodgson DM, Chung YK, Paris JM. J. Am. Chem. Soc. 2004; 126: 8664
    • 5b Hodgson DM, Chung YK, Nuzzo I, Freixas G, Kulikiewicz KK, Cleator E, Paris JM. J. Am. Chem. Soc. 2007; 129: 4456
    • 5c Hodgson DM, Salik S, Fox DJ. J. Org. Chem. 2010; 75: 2157
    • 6a Baudin JB, Hareau G, Julia SA, Ruel O. Tetrahedron Lett. 1991; 32: 1175
    • 6b Blakemore PR, Cole WJ, Kocienski PJ, Morley A. Synlett 1998; 26
    • 6c Kocienski PJ, Bell A, Blakemore PR. Synlett 2000; 365
  • 7 Toró A, Deslongchamps P. J. Org. Chem. 2003; 68: 6847
  • 8 Pan X, Xu S, Huang R, Yu W, Liu F. Org. Process Res. Dev. 2015; 19: 611
  • 9 Sempere Y, Carreira EM. Angew. Chem. Int. Ed. 2018; 57: 7654
  • 10 Sharma GV. M, Punna S, Krishna PR, Chorghade MS, Ley SV. Tetrahedron: Asymmetry 2005; 16: 1125
  • 11 Pfeffer TJ, Sasse F, Schmidt CF, Lakämper S, Kirschning A, Scholz T. Eur. J. Med. Chem. 2016; 112: 164
  • 12 Goto T, Urabe D, Isobe Y, Arita M, Inoue M. Tetrahedron 2015; 71: 8320
  • 13 Procedure for the synthesis of alcohol 6: BuLi (1.58 M in hexane, 0.196 mL, 0.310 mmol) was added to a solution of 2,2,6,6-tetramethylpiperidine (43.8 mg, 0.310 mmol) in MTBE (0.300 mL) at –78 °C and warmed to ambient temperature. After being stirred for 15 min, the resulting solution was cooled to 0 °C before a solution of epoxide 5 (27.6 mg, 0.124 mmol) in MTBE (0.940 mL) was slowly added. Once the addition was complete, the mixture was allowed to warm to ambient temperature over a period of 1 h. After being stirred for a further 12 h, the mixture was quenched with saturated aqueous NH4Cl solution, all solvents were removed in vacuo, and the residue was rediluted with Et2O, washed with H2O and brine, dried over anhydrous MgSO4 and Na2SO4, and then concentrated in vacuo. The residue was purified with flash column chromatography on silica gel (hexane/EtOAc, 4:1) to give alcohol 6 (22.6 mg, 82% yield) as a pale-yellow oil; Rf = 0.25 (hexane/EtOAc, 4:1); [α]D 25 –10.3 (c 1.80, CHCl3). IR (neat): νmax = 3338, 3073, 3023, 2959, 2935, 2870, 1649, 1447, 1384, 1367, 1334, 1317, 1167, 1067, 985, 884 cm–1. 1H NMR (CDCl3, 400 MHz): δ = 4.69 (m, 1 H), 4.67 (m, 1 H), 4.23 (d, J = 4.8 Hz, 1 H), 2.10 (ddd, J = 5.6, 10.7, 14.3 Hz, 1 H), 2.03–1.87 (m, 2 H), 1.81–1.66 (m, 2 H), 1.73 (s, 3 H), 1.61–1.45 (m, 2 H), 1.45–1.30 (m, 2 H), 1.24 (m, 1 H), 1,20 (m, 1 H), 0.90 (d, J = 6.8 Hz, 3 H), 0.89 (d, J = 6.8 Hz, 3 H), 0.57 (ddt, J = 7.4, 9.8, 5.2 Hz, 1 H), 0.18 (dt, J = 10.0, 3.3 Hz, 1 H). 13C NMR (CDCl3, 100 MHz): δ = 146.7 (C), 109.4 (CH2), 74.4 (CH), 46.5 (CH), 35.6 (CH2), 32.1 (CH2), 31.9 (CH), 31.0 (CH), 29.5 (CH2), 24.9 (CH2), 23.4 (CH), 23.3 (CH), 22.5 (CH3), 19.8 (CH3), 19.6 (CH3). HRMS (ESI-TOF): m/z [M – OH]+ calcd for C15H25: 205.1956; found: 205.1956.
  • 14 Ohtani I, Kusumi T, Kashman Y, Kakisawa H. J. Am. Chem. Soc. 1991; 113: 4092
  • 15 Evans DA, Ennis MD, Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
  • 16 Griffith WP, Ley SV, Whitcombe GP, White AD. J. Chem. Soc., Chem. Commun. 1987; 1625
    • 17a Bailey PS. Chem. Rev. 1958; 58: 925
    • 17b Paquette LA, Kang HJ. J. Am. Chem. Soc. 1991; 113: 2610
    • 17c Hayakawa I, Matsumaru N, Sakakura A. J. Org. Chem. 2021; 86: 9802