Synlett 2023; 34(17): 2047-2051
DOI: 10.1055/a-2136-3849
letter

Mechanosynthesis of Fullerotetrahydroquinolines by Copper-Mediated sp3 C–H Functionalization of N,N-Dimethylanilines with [60]Fullerene

Huan Yang
a   Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Shi-Qi Ye
a   Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Gang Shao
a   Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Jun-Shen Chen
a   Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
,
Guan-Wu Wang
a   Hefei National Research Center for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. of China
b   State Key Laboratory of Applied Organic Chemistry, LanzhouUniversity, Lanzhou, Gansu 730000, P. R. of China
› Institutsangaben
We are grateful for financial support from the National Natural Science Foundation of China (21372211).


Abstract

An efficient mechanochemical copper-mediated coupling reaction of [60]fullerene with para- or meta-substituted N,N-dimethylanilines under solvent-free and ambient conditions has been developed. The present protocol provides N-methylfullerotetrahydroquinolines containing electron-withdrawing or electron-donating groups on the phenyl ring in a short reaction time and at room temperature. This reaction occurs through copper-mediated sp3 C–H functionalization of N,N-dimethylanilines under ball-milling conditions. In addition, a representative fullerotetrahydroquinoline has been applied in a perovskite solar cell device.

Supporting Information



Publikationsverlauf

Eingereicht: 20. Juni 2023

Angenommen nach Revision: 24. Juli 2023

Accepted Manuscript online:
24. Juli 2023

Artikel online veröffentlicht:
07. September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews, see:
    • 1a Stolle A, Szuppa T, Leonhardt SE. S, Ondruschka B. Chem. Soc. Rev. 2011; 40: 2317
    • 1b James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearhouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
    • 1c Friščić T. Chem. Soc. Rev. 2012; 41: 3493
    • 1d Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
    • 1e Hernández JG, Bolm C. J. Org. Chem. 2017; 82: 4007
    • 1f Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2019; 58: 3285
    • 1g Wang N.-N, Wang G.-W. Prog. Chem. 2020; 32: 1076
    • 1h Wang H, Ying P, Yu J, Su W. Chin. J. Org. Chem. 2021; 41: 1897
    • 1i Zhou K, Mao Y, Wu F, Lou S, Xu D. Chin. J. Org. Chem. 2021; 41: 4523

      For reviews, see:
    • 2a Balch AL, Winkler K. Chem. Rev. 2016; 116: 3812
    • 2b Chen M, Guan R, Yang S. Adv. Sci. (Weinheim, Ger.) 2019; 6: 1800941
    • 2c Harano K, Nakamura E. Acc. Chem. Res. 2019; 52: 2090

      For reviews, see:
    • 3a Umeyama T, Imahori H. Acc. Chem. Res. 2019; 52: 2046
    • 3b Jia L, Chen M, Yang S. Mater. Chem. Front. 2020; 4: 2256
    • 3c Xing Z, Li S.-H, Yang S. Small Struct. 2022; 3: 2200012

      For reviews, see:
    • 4a Zhu S.-E, Li F, Wang G.-W. Chem. Soc. Rev. 2013; 42: 7535
    • 4b Wang G.-W. Chin. J. Chem. 2021; 39: 1797

    • For recent examples, see:
    • 4c Liu H.-W, Xu H, Shang G, Wang G.-W. Org. Lett. 2019; 21: 2625
    • 4d Shao G, Niu C, Liu H.-W, Yang H, Chen J.-S, Yao Y.-R, Yang S, Wang G.-W. Org. Lett. 2023; 25: 1229

      For examples, see:
    • 5a Wang G.-W, Komatsu K, Murata Y, Shiro M. Nature 1997; 387: 583
    • 5b Su Y.-T, Wang G.-W. Org. Lett. 2013; 15: 3408

      For selected samples, see:
    • 6a Liou K.-F, Cheng C.-H. Chem. Commun. 1996; 1423
    • 6b Gan L, Jiang J, Zhang W, Su Y, Shi Y, Huang C, Pan J, Lü M, Wu Y. J. Org. Chem. 1998; 63: 4240
    • 6c Lawson GE, Kitaygorodskiy A, Sun Y.-P. J. Org. Chem. 1999; 64: 5913
    • 6d Bernstein R, Foote CS. J. Phys. Chem. A 1999; 103: 7244
    • 6e Guo L.-W, Gao X, Zhang D.-W, Wu S.-H, Wu H.-M, Li Y.-J, Wilson SR, Richardson CF, Schuster DI. J. Org. Chem. 2000; 65: 3804
    • 6f Nakamura Y, Suzuki M, O-kawa K, Konno T, Nishimura J. J. Org. Chem. 2005; 70: 8472
    • 6g Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2014; 20: 6120
    • 6h Lim SH, Ahn M, Wee K.-R, Shim JH, Choi J, Ahn D.-S, Cho DW. J. Org. Chem. 2020; 85: 12882
  • 7 Wang G.-W, Chen X.-P, Cheng X. Chem. Eur. J. 2006; 12: 7246
    • 8a Zhang M, Wang H.-J, Li F.-B, Zhong X.-X, Huang Y, Liu L, Liu C.-Y, Asiri AM, Alamry KA. Org. Biomol. Chem. 2018; 16: 2975
    • 8b Niu C, Chen X.-P, Yin Z.-C, Wang G.-W. Eur. J. Org. Chem. 2019; 6504
  • 9 Liu X, Wang X.-Y, Sun R, Huang M.-R, Liu X.-S, Wang H.-J, Li F.-B, Liu X.-F, Liu L, Liu C.-Y. Adv. Synth. Catal. 2021; 363: 4399
  • 10 Gao W, Jin B, Peng R.-F, Yu Y, Shan DS, Chu S.-J. Ind. Eng. Chem. Res. 2016; 55: 10507
    • 11a Wang G.-W, Li F.-B. Org. Biomol. Chem. 2005; 3: 794
    • 11b Liu T.-X, Zhang Z, Liu Q, Zhang P, Jia P, Zhang Z, Zhang G. Org. Lett. 2014; 16: 1020
    • 11c Jiang S.-P, Su Y.-T, Liu K.-Q, Wu Q.-H, Wang G.-W. Chem. Commun. 2015; 51: 6548
    • 11d Jiang S.-P, Wu Q.-H, Wang G.-W. J. Org. Chem. 2017; 82: 10823
    • 11e Xia S, Liu T.-X, Zhang P, Ma J, Liu Q, Ma N, Zhang Z, Zhang G. J. Org. Chem. 2018; 83: 862
    • 11f Jiang S.-P, Liu Z, Lu W.-Q, Wang G.-W. Org. Chem. Front. 2018; 5: 1188
    • 11g Teng Q, Tan Y.-C, Miao C.-B, Sun X.-Q, Yang H.-T. J. Org. Chem. 2018; 83: 15268
  • 12 Liu Z, Yin Z.-C, Lu W.-Q, Niu C, Chen W, Yang S, Wang G.-W. Org. Lett. 2021; 23: 4051
    • 13a Lu W.-Q, Zhou D.-B, Yin Z.-C, Liu Q.-S, Wang G.-W. Chem. Commun. 2021; 57: 7043
    • 13b Lu W.-Q, Yin Z.-C, Liu Q.-S, Wang G.-W. Asian J. Org. Chem. 2022; 11: e202200045
    • 14a Yan X.-X, Li B, Lin H.-S, Jin F, Niu C, Liu K.-Q, Wang G.-W, Yang S. Research (Washington, DC U. S.) 2020; 2020: 2059190
    • 14b Yan X.-X, Niu C, Yin Z.-C, Lu W.-Q, Wang G.-W. Sci. Bull. (Beijing) 2022; 67: 2406
  • 15 Reaction of C60 with N,N-Dimethylanilines 1aq; General Procedure A mixture of C60 (0.05 mmol), the appropriate 1 (0.075 mmol), and Cu(OTf)2 (0.10 mmol), together with four stainless-steel balls (5 mm diameter), were introduced into a stainless-steel jar (5 mL) and milled vigorously (40 Hz) in a GT600 mixer mill at r.t. for 1 h. The mixture was then extracted with CS2 and separated by column chromatography (silica gel, CS2) to remove unreacted C60; further elution with CH2Cl2–CS2 (1:2) afforded product 2. 2a Prepared by the general procedure from C60 (35.8 mg, 0.05 mmol), 1a (12.7 mg, 0.075 mmol), and Cu(OTf)2 (36.9 mg, 0.10 mmol) as an amorphous brown solid; yield: 17.9 mg (41%) [recovered C60: 13.5 mg (38%)]. FTIR (KBr): 1599, 1585, 1504, 1334, 1308, 1290, 1107, 527 cm–1. 1H NMR (500 MHz, 1:1 CS2–CDCl2): δ = 9.29 (d, J = 2.5 Hz, 1 H), 8.34 (dd, J = 9.2 Hz, 2.5 Hz, 1 H), 7.24 (d, J = 9.2 Hz, 1 H), 4.84 (s, 2 H), 3.49 (s, 3 H). 13C NMR (126 MHz, 1:1 CS2–CDCl2): δ = (all 2 C unless indicated) 155.39, 153.68 (1 C, aryl C), 152.18, 146.71 (1 C), 146.59 (1 C), 145.43, 145.39, 145.18, 145.13, 144.69, 144.46, 144.45, 144.33, 144.31, 144.30, 143.98, 143.60, 143.56, 142.04, 141.59 (4 C), 141.09, 141.00, 140.96, 140.78, 140.60, 140.58, 139.34, 139.23 (1 C, aryl C) , 138.93, 135.44, 133.54, 126.20 (1 C, aryl C), 123.79 (1 C, aryl C), 123.62 (1 C, aryl C), 111.99 (1 C, aryl C), 67.16 [1 C, C(sp3) of C60], 64.21 (1 C), 62.85 [1 C, C(sp3) of C60], 39.08 (1 C). MALDI-TOF MS: m/z [M] calcd for C68H8N2O2: 884.0591; found: 884.0590. UV/Vis (CHCl3): λmax nm (log ε): 259 (5.06), 318 (4.64), 433 (3.61), 697 (2.61).