Synlett 2023; 34(16): 1930-1938
DOI: 10.1055/a-2113-2981
letter

An Efficient One-Pot, Three-Component Synthesis of Tetrasubstituted Pyrroles under Catalyst- and Solvent-Free Conditions

Gnanaoli Karthiyayini
a   Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, India
,
Deepan Babu Rajkumar
a   Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, India
,
Subbiah Nagarajan
b   Department of Chemistry, National Institute of Technology-Warangal, Warangal-506004, India
,
Vellaisamy Sridharan
c   Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu-181143, J&K, India
,
C. Uma Maheswari
a   Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur-613401, India
› Author Affiliations
Financial support from the Science and Engineering Research Board (SERB) for the award of a research grant (CRG/2021/006424) and Department of Science and Technology (DST), Ministry of Science and Technology, India, Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (FIST, SR/FST/CS-I/2018/62) to SCBT, SASTRA Deemed University for the NMR facility are gratefully acknowledged.


Abstract

An environmentally benign, catalyst- and solvent-free, three-component synthesis of tetrasubstituted pyrroles was established. The reaction proceeds via a nucleophilic attack of primary amine on dialkyl acetylenedicarboxylate followed by Michael addition with β-nitrostyrene and successive intramolecular cyclization and aromatization to yield 1,2,3,4-tetrasubstituted pyrroles in good to excellent yields. A wide range of primary amines including aromatic amines and benzylamines were coupled with differently substituted β-nitrostyrenes and dialkyl acetylenedicarboxylate. Furthermore, compared to previous reported methods, the present study is highly atom economical and environmentally benign and can be scaled up.

Supporting Information



Publication History

Received: 04 May 2023

Accepted after revision: 20 June 2023

Accepted Manuscript online:
21 June 2023

Article published online:
11 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Brahmachari G. Green Synthetic Approaches for Biologically Relevant Heterocycles. Elsevier; Amsterdam: 2015
    • 1b Younus HA, Al-Rashida M, Hameed A, Uroos M, Salar U, Rana S, Khan KM. Expert. Opin. Ther. Pat. 2021; 31: 267
    • 2a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford/NY: 1998
    • 2b Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
    • 4a Attanasi OA, Favi G, Mantellini F, Moscatelli G, Santeusanio S. J. Org. Chem. 2011; 76: 2860
    • 4b Yuvaraj P, Manivannan K, Reddy BS. R. Tetrahedron Lett. 2015; 56: 78
    • 4c Yao CS, Lu K, Song B, Liu B, Li TJ, Yub CX. J. Heterocycl. Chem. 2014; 51: 1807
    • 4d Jiang B, Tu XJ, Wang X, Tu SJ, Li G. Org. Lett. 2014; 16: 3656
    • 4e Mitsudo K, Thansandote P, Wilhelm T, Mariampillai B, Lautens M. Org. Lett. 2006; 8: 3939
    • 4f Chen M.-N, Mo L.-P, Cui Z.-S, Zhang Z.-H. Curr. Opin. Green Sustainable Chem. 2019; 15: 27
    • 4g Zhang H.-Y, Hao X.-P, Mo L.-P, Liu S.-S, Zhang W.-P, Zhang Z.-H. New J. Chem. 2017; 41: 7108
    • 4h Zhang M, Liu Y.-H, Shang Z.-R, Hu H.-C, Zhang Z.-H. Catal. Commun. 2017; 88: 39
    • 5a Li JJ. Heterocyclic Chemistry in Drug Discovery. Wiley; New York: 2013
    • 5b Pavlovic D, Mutak S, Andreotti D, Biondi S, Cardullo F, Paio A, Piga E, Donati D, Lociuro S. ACS Med. Chem. Lett. 2014; 5: 1133
    • 5c Baraldi PG, Preti D, Fruttarolo F, Tabrizi MA, Romagnoli R. Bioorg. Med. Chem. 2007; 15: 17
    • 5d Bando T, Sugiyama H. Acc. Chem. Res. 2006; 39: 935
    • 5e Hagan D. Nat. Prod. 2000; 17: 435
    • 5f Trost BM, Dong G. Org. Lett. 2007; 9: 2357
    • 6a Toja E, Selva D, Schiatti P. J. Med. Chem. 1984; 27: 610
    • 6b Demopoulos VJ, Rekka E. J. Pharm. Sci. 1995; 84: 79
    • 6c Almerico AM, Diana P, Barraja P, Dattolo G, Mingoia F, Loi AG, Scintu F, Milia C, Puddu I, La Colla P. Farmaco 1998; 53: 33
    • 6d Denny WA, Rewcastle GW, Baguley BC. J. Med. Chem. 1990; 33: 814
    • 6e Lehuede J, Fauconneau B, Barrier L, Qurakow M, Piriou A, Vierfond JM. Eur. J. Med. Chem. 1999; 34: 991
    • 6f Wang MZ, Xu H, Liu TW, Feng Q, Yu SJ, Wang SH, Li ZM. Eur. J. Med. Chem. 2011; 46: 1463
    • 6g Poeta MD, Schell WA, Dykstra CC, Jones S, Tidwell RR, Czarny A, Bajic M, Bajic M, Kumar A, Boykin D, Perfect JR. Antimicrob. Agents Chemother. 1998; 42: 2495
    • 6h Goel A, Agarwal N, Singh FV, Sharon A, Tiwari P, Dixit M, Pratap R, Srivastava AK, Maulik PR, Ram VJ. Bioorg. Med. Chem. Lett. 2004; 14: 1089
    • 7a Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Eur. J. Med. Chem. 2018; 157: 527
    • 7b Petri GL, Spano V, Spatola R, Holl R, Raimondi MV, Barraja P, Montalbano A. Eur. J. Med. Chem. 2020; 208: 112783
  • 8 Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 1635
  • 9 Paal C. Ber. Dtsch. Chem. Ges. 1885; 18: 367
  • 10 Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
  • 11 Azizi N, Khajeh-Amiri A, Ghafuri H, Bolourtchian M, Saidi MR. Synlett 2009; 2245
    • 12a Zhu D, Zhao J, Wei Y, Zhou H. Synlett 2011; 2185
    • 12b Egi M, Azechi K, Akai S. Org. Lett. 2009; 11: 5002
    • 12c Ackermann L, Sandmann R, Kaspar LT. Org. Lett. 2009; 11: 2031
    • 12d Cacchi S, Fabrizi G, Filisti E. Org. Lett. 2008; 10: 2629
    • 12e Saito A, Konishi O, Hanzawa Y. Org. Lett. 2010; 12: 372
    • 12f Yoshida M, Al-Amin M, Shishido K. Synthesis 2009; 2454
    • 12g Davies PW, Martin N. Org. Lett. 2009; 11: 2293
    • 12h Chiba S, Wang Y.-F, Lapointe G, Narasaka K. Org. Lett. 2008; 10: 313
    • 12i Wang Y.-F, Toh KK, Chiba S, Narasaka K. Org. Lett. 2008; 10: 5019
  • 13 Galliford CV, Scheidt KA. J. Org. Chem. 2007; 72: 1811
  • 14 Soltani M, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Tangestaninejad S, Mirkhani V. C. R. Chim. 2016; 19: 381
    • 15a Ghabraie E, Balalaie S, Bararjanian M, Bijanzadeh HR, Rominger F. Tetrahedron Lett. 2011; 67: 5415
    • 15b Reddy LM, Chandrashekar P, Reddy AR, Reddy CK. Russ. J. Gen. Chem. 2015; 85: 155
    • 16a Goyal S, Patel JK, Gangar M, Kumar K, Nair VA. RSC Adv. 2015; 5: 3187
    • 16b Silveira CC, Mendes SR, Martins MG, Schlӧsser SC, Kaufman TS. Tetrahedron Lett. 2013; 69: 9076
    • 16c Li L, Chen Q, Xiong X, Zhang C, Qian J, Shi J, An Q, Zhang M. Chin. Chem. Lett. 2018; 29: 1893
  • 17 Moghaddam FM, Foroushani BK, Rezvani HR. RSC Adv. 2015; 23: 18092
    • 18a Das B, Bhunia N, Lingaiah M. Synthesis 2011; 3471
    • 18b Jagadhane BP, Jadhav NC, Herlekar PO, Telvekar VN. Synth. Commun. 2015; 45: 2130
    • 18c Li B.-L, Li P.-H, Fang X.-N, Li C.-X, Sun J.-L, Mo L.-P, Zhang Z.-H. Tetrahedron Lett. 2013; 69: 7011
    • 18d Nandeesh KN, Raghavendra GM, Revanna CN, Jenifer Vijay TA, Rangappa KS, Mantelingu K. Synth. Commun. 2014; 44: 1103
    • 19a Pavithra T, Devi ES, Nagarajan S, Sridharan V, Maheswari CU. Eur. J. Org. Chem. 2019; 6884
    • 19b Pavithra T, Devi ES, Nagarajan S, Sridharan V, Maheswari CU. ChemistrySelect 2021; 6: 3548
    • 19c Pavithra T, Gnanaoli K, Nagarajan S, Sridharan V, Maheswari CU. Synlett 2023; 34: 807
    • 19d Pavithra T, Rajkumar DB, Gnanaoli K, Gowda SN. S, Devipriya N, Maheswari CU. ChemistrySelect 2023; 8: e202204564
    • 20a Li X, Xu J, Gao Y, Fang H, Tang G, Zhao Y. J. Org. Chem. 2015; 80: 2621
    • 20b Borah AJ, Yan G. Org. Biomol. Chem. 2015; 13: 8094
    • 20c Sun M, Xu Z, Li W, Yanga L, You H, Yu D, Fang F, Wang Y, Liu ZQ. Adv. Synth. Catal. 2020; 362: 2195
    • 21a Smulik R, Debski D, Zielonka J, Michałowski B, Adamus J, Marcinek A, Kalyanaraman B, Sikora A. J. Biol. Chem. 2014; 51: 35570
    • 21b Shafirovich V, Lymar SV. J. Am. Chem. Soc. 2003; 125: 6547
    • 21c Sagar A, Babu VN, Dey A, Sharada DS. Tetrahedron Lett. 2015; 56: 2710
    • 21d Rostami H, Shiri L. Russ. J. Org. Chem. 2019; 55: 1204
    • 21e Santhini PV, Babu SA, Akhil KR, Suresh E, John J. Org. Lett. 2017; 19: 2458 General Procedure for the Synthesis of Tetrasubstituted Pyrrole A mixture of amine (1.2 mmol), dialkyl acetylenedicarboxylate (1.2 mmol), and β-nitro alkene (1.0 mmol) was taken in a reaction vial and stirred at 120 °C for 4–6 h. Progress of the reaction was monitored by TLC. After the completion of the reaction, water was added to the mixture and extracted with ethyl acetate. The extract was washed with brine solution and dried over anhydrous Na2SO4. Removal of the solvent under vacuum afforded the crude product, which was purified by column chromatography using hexane/ethyl acetate mixture (90:10). Diethyl 1-(4-Methoxyphenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxylate (4a) Isolated yield 86%, 338 mg, brownish oily liquid. 1H NMR (600 MHz, CDCl3): δ = 7.44 (dd, J = 4.2, 0.6 Hz, 2 H), 7.35 (dd, J = 4.2, 3.4 Hz, 2 H), 7.28–7.25 (m, 2 H), 6.94 (d, J = 1.1 Hz, 2 H), 6.93 (s, 1 H), 4.30 (q, J = 3.6 Hz, 2 H), 4.16 (q, J = 3.6 Hz, 2 H), 1.27 (t, J = 3.6 Hz, 2 H), 1.17 (t, J = 3.5 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 166.43, 160.02, 159.57, 133.40, 132.58, 128.56, 127.82, 127.52, 127.10, 126.14, 124.53, 123.47, 121.85, 114.01, 61.38, 60.85, 55.60, 14.13, 14.03. HRMS (ESI): m/z calcd for C23H23NO5 [M + H]: 393.1576; found: 394.1653. Diethyl 1-Phenethyl-4-phenyl-1H-pyrrole-2,3-dicarboxylate (4u) Isolated yield 51%, 119 mg, white solid; mp 66–68 °C. 1H NMR (600 MHz, CDCl3): δ = 7.34–7.28 (m, 6 H), 7.25–7.22 (m, 2 H), 7.20–7.16 (m, 2 H), 6.70 (s, 1 H), 4.56–4.47 (m, 2 H), 4.33 (q, J = 3.3 Hz, 2 H), 4.29 (q, J = 3.3 Hz, 2 H), 3.08 (q, J = 3.6 Hz, 2 H), 1.35 (t, J = 3.3 Hz, 3 H), 1.28 (t, J = 3.6 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 166.95, 160.25, 137.98, 133.46, 128.90, 128.62, 128.46, 127.39, 126.77, 126.73, 125.59, 123.27, 122.65, 120.18, 61.26, 60.65, 51.17, 38.17, 14.15, 14.06. HRMS (ESI): m/z calcd for C24H25NO4 [M + H]+: 391.1784; found: 392.1861. Ethyl 2-(4-Methoxyphenyl)-4-oxo-2,4-dihydrochromeno[3,4-c]pyrrole-3-carboxylate (4am′) Isolated yield 68%, 246.8 mg, yellow solid; mp 77–79 °C. 1H NMR (600 MHz, CDCl3): δ = 7.66 (dt, J = 3.8, 0.4 Hz, 1 H), 7.36–7.33 (m, 3 H), 7.32 (d, J = 4.4 Hz, 2 H), 7.22 (ddd, J = 3.9, 2.7, 1.6 Hz, 1 H), 6.99 (d, J = 4.4 Hz, 2 H), 4.29 (q, J = 3.6 Hz, 2 H), 3.87 (s, 1 H), 1.21 (t, J = 3.6 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 160.09, 159.98, 151.45, 131.97, 128.29, 126.99, 126.70, 124.06, 122.61, 122.27, 118.47, 117.42, 115.68, 114.34, 110.74, 61.93, 55.60, 13.77. HRMS (ESI): m/z calcd for C21H17NO5 [M + H]+: 363.1107; found: 364.1181.