Synlett 2023; 34(15): 1809-1813
DOI: 10.1055/a-2047-9575
letter

Use of Carbonyldiimidazole as an Activator of Formic Acid in a Tris(dibenzylideneacetone)dipalladium-Catalyzed Formylation of Aryl Iodides

Sundar Nadhagopal
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Center (BBRC), Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
,
Zulelal Dolas
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Center (BBRC), Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
,
Arundutt Silamkoti
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Center (BBRC), Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
,
Anuradha Gupta
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Center (BBRC), Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
,
Arvind Mathur
b   Small Molecule Drug Discovery, Research and Early Development, Bristol Myers Squibb, P.O. Box 4000, Princeton, New Jersey 08543-4000, USA
,
Sukhen Karmakar
a   Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Center (BBRC), Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560 099, India
› Author Affiliations


Abstract

A carbonyldiimidazole (CDI)-promoted generation of CO from formic acid has been exploited in a reductive formylation of aryl iodides in the presence of tris(dibenzylideneacetone)dipalladium. The reaction conditions are mild with a broad functional-group tolerance that includes keto, bromo, nitrile, ester, and nitro groups. In the reaction pathway, CDI reacts with formic acid to generate a formyl imidazole that ultimately produces the CO needed for the formylation process on the activated arylpalladium complex.

Supporting Information



Publication History

Received: 02 December 2022

Accepted after revision: 06 March 2023

Accepted Manuscript online:
06 March 2023

Article published online:
12 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Ferguson LN. Chem. Rev. 1946; 38: 227
    • 1b Carey FA, Sundberg RJ. Advanced Organic Chemistry, 5th ed. Springer; New York: 2007
    • 2a Wynberg H. Chem. Rev. 1960; 60: 169
    • 2b Aldabbagh F. Comprehensive Organic Functional Group Transformations II, Vol. 3, Part 1. Jones K. Elsevier; Amsterdam: 2005. Chap. 3.03 99
    • 2c Crawford LP, Richardson SK. Gen. Synth. Methods 1994; 16: 37
    • 2d Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd ed. Wiley: New York 1999
    • 2e Vilsmeier A, Haack A. Bull. Soc. Chim. Fr. 1962; 1989
    • 3a Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 3b Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761
    • 3c Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 3d Singh AS, Bhanage BM, Nagarkar JM. Tetrahedron Lett. 2011; 52: 2383
  • 4 Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
    • 5a Korsager S, Taaning RH, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2013; 78: 6112
    • 5b Friis SD, Lindhardt AT, Skrydstrup T. Acc. Chem. Res. 2016; 49: 594
    • 6a Yu B, Zhao Y, Zhang H, Xu J, Hao L, Gao X, Liu Z. Chem. Commun. 2014; 50: 2330
    • 6b Yu B, Yang Z, Zhao Y, Hao L, Zhang H, Gao X, Han B, Liu Z. Chem. Eur. J. 2016; 22: 1097
    • 6c Kumar S, Verma S, Jain SL. Tetrahedron Lett. 2015; 56: 2430
  • 7 Natte K, Dumrath A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2014; 53: 10090
    • 8a Hajipour A.-R, Tavangar-Rizi Z, Iranpoor N. RSC Adv. 2016; 6: 78468
    • 8b Iranpoor N, Firouzabadi H, Etemadi-Davan ED, Rostami A, Moghadam KR. Appl. Organomet. Chem. 2015; 29: 719
    • 8c Odell LR, Russo F, Larhed M. Synlett 2012; 685
  • 9 Jiang X, Wang J.-M, Zhang Y, Chen Z, Zhu Y.-M, Ji S.-J. Org. Lett. 2014; 16: 3492
    • 10a Qi X, Jiang L.-B, Li H.-P, Wu X.-F. Chem. Eur. J. 2015; 21: 17650
    • 10b Hussain N, Chhalodia AK, Ahmed A, Mukherjee D. ChemistrySelect 2020; 5:  11272
    • 10c Cao J, Zheng Z.-J, Xu Z, Xu L.-W. Coord. Chem. Rev. 2017; 336: 43
    • 11a Cacchi S, Fabrizi G, Goggiamani A. J. Comb. Chem. 2004; 6: 692
    • 11b Qi X, Li C.-L, Wu X.-F. Chem. Eur. J. 2016; 22: 5835
  • 12 Sun G, Lv X, Zhang Y, Lei M, Hu L. Org. Lett. 2017; 19: 4235
    • 13a Wu F.-P, Peng J.-B, Meng L.-S, Qi X, Wu X.-F. ChemCatChem 2017; 9:  3121
    • 13b Molaei E, Mohammadsaleh F, Niknam K. Catal. Lett. 2020; 150: 1970
  • 14 Wu X.-F. Sci. Rep. 2018; 8: 8389
  • 15 On subjecting methyl 5-iodo-2-methoxynicotinate (5.0 gm scale) to the formylation reaction conditions reported in ref. 14, 6-methoxy-5-(methoxycarbonyl)nicotinic acid was obtained instead of desired methyl 5-formyl-2-methoxynicotinate.
    • 16a Woodman EK, Chaffey JG. K, Hopes PA, Hose DR. J, Gilday JP. Org. Process Res. Dev. 2009; 13: 106
    • 16b Vaidyanathan R, Kalthod VG, Ngo DP, Manley JM, Lapekas SP. J. Org. Chem. 2004; 69: 2565
    • 16c Lafrance D, Bowles P, Leeman K, Rafka R. Org. Lett. 2011; 13: 2322
  • 17 Marty M. In Encyclopedia of Reagents for Organic Synthesis. Wiley; Chichester: 2001. DOI: 10.1002/047084289X.rf028
    • 18a Eguchi H, Hamada H, Nishitani S. JP 5376885, 1978 .
    • 18b Gockel SN, Hull KL. Org. Lett. 2015; 17: 3236
  • 19 4-Methoxybenzaldehyde (2); Typical Procedure [CAS Reg. No. 123–11–5] HCO2H (207 mg, 4.5 mmol) was added to a solution of CDI (389 mg, 2.4 mmol) in DMF (5 mL) at rt and the mixture was stirred for 2 h. 4-iodoanisole (1; 236 mg, 1.0 mmol), Et3N (253 mg, 2.5 mmol), and Pd2(dba)3 (46 mg, 0.05 mmol, 5.0 mol%) were added successively and the mixture was heated at 70 °C for 6 h (monitored by TLC). The mixture was cooled to rt, diluted with H2O (5 mL), and extracted with MTBE (2 × 15 mL). The combined organic layer was washed with H2O (10 mL) and brine (10 mL), then dried (Na2SO4) and concentrated. The residue was purified by flash column chromatography [silica gel, PE–EtOAc (20:1)] to give a colorless liquid; yield: 122 mg (91%). 1H NMR (400 MHz, CDCl3): δ = 9.83 (s, 1 H), 7.82–7.75 (d, J = 8.6 Hz, 2 H), 7.01–6.84 (d, J = 8.6 Hz, 2 H), 3.83 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 189.59, 163.45, 130.78, 128.80, 113.15, 54.40. The characterization data for this compound were identical to those previously reported in the literature.4