Synlett 2023; 34(13): 1573-1576
DOI: 10.1055/a-2030-6797
letter
Special Edition Thieme Chemistry Journals Awardees 2022

Synthesis of 2‑Boryl Allylboronates by a Bimetallic Platinum/Zinc-Promoted Diborylation of Propargylic Amines

Xiao-Nan Shi
a   State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Jia-Le Wang
a   State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Jiang-Bin Wu
a   State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
,
Chun-Xiang Zhuo
a   State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
b   Shenzhen Research Institute of Xiamen University, Shenzhen 518057, P. R. of China
› Author Affiliations
We are grateful for financial support from the Guangdong Basic and Applied Basic Research Foundation (2020A1515110437), the National Natural Science Foundation of China (22171236), the Recruitment Program of Global Experts, and the Fundamental Research Funds for the Central Universities (20720210012).


Abstract

2‑Boryl allylboronates, which contain both a C(sp2)–B bond and a C(sp3)–B bond, are attractive synthetic intermediates due to their diverse reactivity profiles toward a wide range of organic transformations. We report a facile approach to (Z)-2‑boryl allylboronates through a Pt/Zn-promoted diborylation reaction of readily available propargylic amines. An array of valuable (Z)-2‑boryl allylboronates were obtained in up to 73% yield in the presence of 2.5 mol% of Pt(PPh3)4 and 50 mol% of ZnBr2.

Supporting Information



Publication History

Received: 26 November 2022

Accepted after revision: 08 February 2023

Accepted Manuscript online:
08 February 2023

Article published online:
01 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Boronic Acids: Preparation, Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Hall DG. Wiley-VCH; Weinheim: 2011
    • 1c Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 1d Xu L, Zhang S, Li P. Chem. Soc. Rev. 2015; 44: 8848
    • 2a Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
    • 2b Trost BM, Zhang G. J. Am. Chem. Soc. 2020; 142: 7312
    • 2c Wang X, Wang Y, Huang W, Xia C, Wu L. ACS Catal. 2021; 11: 1
    • 2d Fan Z, Ye M, Wang Y, Qiu J, Li W, Ma X, Yang K, Song Q. ACS Cent. Sci. 2022; 8: 1134
    • 3a Ishiyama T, Kitano T, Miyaura N. Tetrahedron Lett. 1998; 39: 2357
    • 3b Yang F.-Y, Cheng C.-H. J. Am. Chem. Soc. 2001; 123: 761
    • 3c Pelz NF, Woodward AR, Burks HE, Sieber JD, Morken JP. J. Am. Chem. Soc. 2004; 126: 16328
    • 3d Sieber JD, Morken JP. J. Am. Chem. Soc. 2006; 128: 74
    • 3e Burks HE, Liu SB, Morken JP. J. Am. Chem. Soc. 2007; 129: 8766
    • 3f Bonet A, Pubill-Ulldemolins C, Bo C, Gulyás H, Fernández E. Angew. Chem. Int. Ed. 2011; 50: 7158
    • 3g Liu J, Nie M, Zhou Q, Gao S, Jiang W, Chung LW, Tang W, Ding K. Chem. Sci. 2017; 8: 5161
    • 3h Kidonakis M, Stratakis M. ACS Catal. 2018; 8: 1227
    • 4a Ohmura T, Oshima K, Suginome M. Angew. Chem. Int. Ed. 2011; 50: 12501
    • 4b Trost BM, Cregg JJ, Quach N. J. Am. Chem. Soc. 2017; 139: 5133
    • 4c Miura T, Nakahashi J, Sasatsu T, Murakami M. Angew. Chem. Int. Ed. 2019; 58: 1138
    • 6a Zhao J, Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 1502
    • 6b Mao L, Bertermann R, Emmert K, Szabó KJ, Marder TB. Org. Lett. 2017; 19: 6586
    • 6c Peck CL, Nekvinda J, Santos WL. Chem. Commun. 2020; 56: 10313
    • 7a Wei C, Zhang L, Li C.-J. Synlett 2004; 1472
    • 7b Li C.-J. Acc. Chem. Res. 2010; 43: 581
    • 7c Yoo W.-J, Zhao L, Li C.-J. Aldrichimica Acta 2011; 44: 43
    • 7d Peshkov VA, Pereshivkoa OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
  • 9 CCDC 2222258 contains the supplementary crystallographic data for compound 2l. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 10 Product 2a; Typical Procedure In a glovebox, a Young Schlenk tube (10 mL) was charged with Pt(PPh3)4 (6.2 mg, 0.005 mmol, 2.5 mol%), ZnBr2 (22.5 mg, 0.1 mmol, 0.5 equiv), compound 1a (70.6 mg, 0.2 mmol, 1.0 equiv), B2pin2 (76.2 mg, 0.3 mmol, 1.5 equiv), and toluene (2.0 mL). The tube was then sealed and transferred out of the glove box. The mixture was stirred at 110 °C until the reaction was complete (TLC), then cooled to rt. The solvents were evaporated under reduced pressure to give a crude mixture that was purified by flash column chromatography [silica gel, PE–EtOAc (100:1)] to give a white solid; yield: 51.5 mg (63%); mp 77.0–79.0 °C. IR (thin film): 2977, 2929, 2869, 1371, 1348, 1309, 1143, 967, 700 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.39–7.29 (m, 5 H), 7.25–7.18 (m, 1 H), 2.55 (dd, J = 8.7, 6.5 Hz, 1 H), 1.69–1.59 (m, 2 H), 1.37–1.26 (m, 24 H), 1.26–1.16 (m, 1 H), 1.10–0.98 (m, 1 H), 0.72 (t, J = 7.3 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 141.0, 138.5, 129.0, 127.7, 126.5, 83.2, 82.9, 32.1, 25.0, 24.8, 24.6, 24.4, 22.1, 13.9. 11B NMR (128 MHz, CDCl3): δ = 31.1. HRMS (ESI): m/z [M + H]+ calcd for C24H39B2O4: 413.3037; found: 413.3047.