Synlett 2023; 34(09): 1042-1048
DOI: 10.1055/a-2005-5372
letter

Addition of Alcohols onto Electron-Deficient Heteroarenium Salts: A Reversible Covalent Bonding Process under Basic Conditions

Baoli Chen
a   State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. of China
,
En Li
c   Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. of China
,
Feifei Song
a   State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. of China
,
Nicolas Guimond
d   Process Research, Bayer AG Crop Science, 40789 Monheim, Germany
,
Jiean Chen
a   State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. of China
c   Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. of China
,
Yong Huang
b   Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, P. R. of China
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (21825101), Hong Kong RGC (16300320), Guangdong Basic and Applied Basic Research Foundation (2019A1515011641) and Shenzhen Science and Technology Innovation Commission (SGDX2019081623241924, KCXFZ20201221173404013).


Abstract

The reversible addition of benzyl alcohol onto heteroarenium salts under basic conditions was studied. Fine-tuning of the nature of the arenium and substituents allowed the discovery of a range of pyrimidinium substrates that can undergo C6-selective alcohol addition. Crossover experiments were also performed to confirm the addition-elimination equilibrium under basic conditions.

Supporting Information



Publication History

Received: 07 September 2022

Accepted after revision: 02 January 2023

Accepted Manuscript online:
02 January 2023

Article published online:
25 January 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Clerin D, Bruice TC. J. Am. Chem. Soc. 1974; 96: 5571
    • 1b Loechler EL, Schneider AM, Schwartz DB, Hollocher TC. J. Am. Chem. Soc. 1987; 109: 3076
    • 1c Link JO, Straub K. J. Am. Chem. Soc. 1996; 118: 2091
    • 1d Li K, Du W, Que NL. S, Liu H.-W. J. Am. Chem. Soc. 1996; 118: 8763
    • 1e Wodzinska J, Snell KD, Rhomberg A, Sinskey AJ, Biemann K, Stubbe J. J. Am. Chem. Soc. 1996; 118: 6319
    • 1f McCarthy DL, Louie DF, Copley SD. J. Am. Chem. Soc. 1997; 119: 11337
    • 1g Murphy JE, Stec B, Ma L, Kantrowitz ER. Nat. Struct. Mol. Biol. 1997; 4: 618
    • 1h Williams SD, David SS. Nucleic Acids Res. 1998; 26: 5123
    • 1i Vocadlo DJ, Davies GJ, Laine R, Withers SG. Nature 2001; 412: 835
    • 1j Xie W, Liu X, Huang RH. Nat. Struct. Mol. Biol. 2003; 10: 781
    • 1k Kluger R, Tittmann K. Chem. Rev. 2008; 108: 1797
    • 1l Rosenthal RG, Ebert M, Kiefer P, Peter DM, Vorholt JA, Erb TJ. Nat. Chem. Biol. 2014; 10: 50
    • 2a Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
    • 2b Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
    • 2c Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 2d Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
    • 2e Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 2f He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 2g Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 2h Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 2i Lutz MD. R, Morandi B. Chem. Rev. 2021; 121: 300
    • 2j Zhao B, Rogge T, Ackermann L, Shi Z. Chem. Soc. Rev. 2021; 50: 8903
    • 2k Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
    • 2l Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2022; 122: 5682
    • 3a Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 3b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 3c MacMillan DW. C. Nature 2008; 455: 304
    • 3d Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 3e Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 3f Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 3g Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 3h Chen X, Gao Z, Ye S. Acc. Chem. Res. 2020; 53: 690
    • 4a Jang H, Hong J, MacMillan DW. C. J. Am. Chem. Soc. 2007; 129: 7004
    • 4b List B, Lerner RA, Barbas CF. III. J. Am. Chem. Soc. 2000; 122: 2395
    • 4c Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 4d Zhan G, Du W, Chen Y.-C. Chem. Soc. Rev. 2017; 46: 1675
    • 4e Reyes-Rodríguez GJ, Rezayee NM, Vidal-Albalat A, Jørgensen KA. Chem. Rev. 2019; 119: 4221
    • 5a Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 5b Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
    • 5c Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 5d Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 5e Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
    • 6a Dhawa U, Tian C, Wdowik T, Oliveira JC. A, Hao J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 13451
    • 6b Xia Y, Dong G. Nat. Rev. Chem. 2020; 4: 600
    • 6c Chen H, Liao G, Xu C, Yao Q, Zhang S, Shi B. CCS Chem. 2021; 3: 455
    • 6d Liu Z, Oxtoby LJ, Liu M, Li Z, Tran VT, Gao Y, Engle KM. J. Am. Chem. Soc. 2021; 143: 8962
    • 6e Liu M, Sun J, Erbay TG, Ni H, Martín-Montero R, Liu P, Engle KM. Angew. Chem. Int. Ed. 2022; 61: e202203624 DOI: 10.1002/anie.202203624.
    • 6f Li Y, Ouyang Y, Chekshin N, Yu J.-Q. J. Am. Chem. Soc. 2022; 144: 4727
    • 7a Procuranti B, Connon SJ. Org. Lett. 2008; 10: 4935
    • 7b Berkessel A, Das S, Pekel D, Neudörfl J. Angew. Chem. Int. Ed. 2014; 53: 11660
    • 7c Das S, Pekel D, Neudörfl J, Berkessel A. Angew. Chem. Int. Ed. 2015; 54: 12479
    • 8a Leleu S, Papamicaël C, Marsais F, Dupas G, Levacher V. Tetrahedron: Asymmetry 2004; 15: 3919
    • 8b Ménová P, Kafka F, Dvořáková H, Gunnoo S, Šanda M, Cibulka R. Adv. Synth. Catal. 2011; 353: 865
    • 8c Hartman T, Šturala J, Cibulka R. Adv. Synth. Catal. 2015; 357: 3573
    • 8d Šturala J, Boháčová S, Chudoba J, Metelková R, Cibulka R. J. Org. Chem. 2015; 80: 2676
    • 9a Speelman JC, Kellogg RM. J. Org. Chem. 1990; 55: 647
    • 9b Dong Z, MacMillan DW. C. Nature 2021; 598: 451
  • 10 Sakai T, Kumoi T, Ishikawa T, Nitta T, Iida H. Org. Biomol. Chem. 2018; 16: 3999
  • 11 Gómez-Bujedo S, Alcarazo M, Pichon C, Álvarez E, Fernández R, Lassaletta JM. Chem. Commun. 2007; 1180
  • 12 Synthesis of Compound 3a–z; General Procedure: Pyridinium salt (0.05 mmol), alcohol (1.0 equiv), base (2.0 equiv) and 4Å molecule sieves (100 mg) in CD3CN (0.5 mL) were stirred for 1 hour under argon in room temperature. Yield was determined by 1H NMR analysis of the crude mixture with 1,4-dinitrobenzene (0.5 equiv) as internal standard. 6-(Benzyloxy)-1-methyl-1,6-dihydropyrimidine (3a) Yield: 23%. 1H NMR (400 MHz, CD3CN): δ = 7.33–7.29 (m, 5 H), 6.79 (d, J = 7.0 Hz, 1 H), 5.61 (d, J = 4.3 Hz, 1 H), 5.19 (ddd, J = 7.0, 4.4, 1.2 Hz, 1 H), 4.33 (d, J = 11.4 Hz, 1 H), 4.12 (d, J = 11.4 Hz, 1 H), 3.04 (s, 3 H).