Synlett 2023; 34(09): 1037-1041
DOI: 10.1055/a-2004-1529
letter

Facile Preparation of Highly Enantioenriched 1,4-Benzothiazin-3-ones by the Substitution of α-Bromoacetate with 2-Aminothiophenol

Ji Su Lee
,
So Jeong Lee
,
Gun Hee Han
,
Yong Sun Park
National Research Foundation of Korea (NRF-2020R1F1A1049676).


Abstract

A simple and convenient approach for highly enantioenriched 2-substituted 1,4-benzothiazin-3-ones was developed via the nucleophilic substitution of α-bromoacetates derived from either l-threonate or l-serinate using 2-aminothiophenol and a subsequent facile lactamization.

Supporting Information



Publication History

Received: 23 October 2022

Accepted after revision: 27 December 2022

Accepted Manuscript online:
27 December 2022

Article published online:
23 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Matsumoto Y, Tsuzuki R, Matsuhisa A, Yoden T, Yamagiwa Y, Yanagisawa I, Shibanuma T, Nohira H. Bioorg. Med. Chem. 2000; 8: 393
    • 1b Schiaffella F, Macchiarulo A, Milanese L, Vecchierelli A, Costantino G, Pietrella D, Fringuelli R. J. Med. Chem. 2005; 48: 7658
    • 1c Molteni V, He X, Nabakka J, Yang K, Kreusch A, Gordon P, Bursulaya B, Warner I, Shin T, Biorac T, Ryder NS, Goldberg R, Doughtyc J, He Y. Bioorg. Med. Chem. Lett. 2004; 14: 1477
    • 1d Fujita M, Ito S, Ota A, Kato N, Yamamoto K, Kawashima Y, Yamauchi H, Iwao J. J. Med. Chem. 1990; 33: 1898
    • 1e Calderone V, Spogli R, Martelli A, Manfroni G, Testai L, Sabatini S, Tabarrini O, Cecchetti V. J. Med. Chem. 2008; 51: 5085
    • 2a Katritzky AR, Odens HH, Zhang S, Rostek CJ, Maender OW. J. Org. Chem. 2001; 66: 6792
    • 2b Carato P, Moussavi Z, Sabaouni A, Lebegue N, Berthelot P, Yous S. Tetrahedron 2006; 62: 9054
    • 2c Sharifi A, Ansari M, Darabi HR, Abaee MS. Tetrahedron Lett. 2016; 57: 529
    • 2d Chen D, Wang Z.-J, Bao W. J. Org. Chem. 2010; 75: 5768
    • 2e Liu W, Min H, Zhu X, Deng G, Liang Y. Org. Biomol. Chem. 2017; 15: 9804
    • 2f Huang W.-S, Xu R, Dodd R, Shakespeare WC. Tetrahedron Lett. 2014; 55: 441
    • 2g Stepanova EE, Dmitriev MV, Maslivets AN. Beilstein J. Org. Chem. 2020; 16: 2322
    • 2h Zhong W, Zhang Y. Tetrahedron Lett. 2001; 42: 3125
    • 2i Krapcho J, Szabo A, Williams J. J. Med. Chem. 1963; 6: 214
    • 2j Jacobsen N, Kolind-Andersen H. Synthesis 1990; 911
    • 2k Ghailane T, Saadouni M, Boukhris S, Habbadi N, Hassikou A, Kerbal A, Garrigues B, Souizi A. Heterocycles 2011; 83: 357
    • 2l Hawk LM. L, Gee CT, Urick AK, Hu H, Pomerantz WC. K. RSC Adv. 2016; 6: 95715
    • 2m Sharifi A, Abaee MS, Rouzgard M, Mirzaei M. Synth. Commun. 2013; 43: 2079
    • 2n Huang W, Xu R, Dodd R, Shakespeare WC. Tetrahedron Lett. 2013; 54: 5214
    • 2o Babudri F, Florio S, Indelicati G, Trapani G. J. Org. Chem. 1983; 48: 4082
    • 2p Xu Z, Li K, Zhai R, Liang T, Gui X, Zhang R. RSC Adv. 2017; 7: 51972
    • 2q Sharifi A, Abaee MS, Rouzgard M, Mirzaei M. Green Chem. Lett. Rev. 2012; 5: 649
    • 2r Martelli A, Manfroni G, Sabbatini P, Barreca ML, Testai L, Novelli M, Sabatini S, Massari S, Tabarrini O, Masiello P, Calderone V, Cecchetti V. J. Med. Chem. 2013; 56: 4718
    • 2s Tawada H, Sugiyama Y, Ikeda H, Yamamoto Y, Meguro K. Chem. Pharm. Bull. 1990; 38: 1238
    • 2t Kamila S, Koh B, Khan O, Zhang H, Biehl ER. J. Heterocycl. Chem. 2006; 43: 1641
    • 2u Freeman F, Kim DS. H. L, Rodriguez E. J. Org. Chem. 1992; 57: 4215
    • 2v Ishikawa Y, Terao Y, Suzuki K, Shikano N, Sekiya M. Chem. Pharm. Bull. 1984; 32: 438
  • 3 Pawliczek M, Shimazaki Y, Kimura H, Oberg KM, Zakpur S, Hashimoto T, Maruoka K. Chem. Commun. 2018; 54: 7078
    • 4a Bernasconi CF, Kittredge KW. J. Org. Chem. 1998; 63: 1944
    • 4b Bordwell FG. Acc. Chem. Res. 1988; 21: 456
    • 5a Liao K, Zhou F, Yu J, Gao W, Zhou J. Chem. Commun. 2015; 51: 16255
    • 5b Huang L, Li J, Zhao Y, Ye X, Liu Y, Yan L, Tan C.-H, Liu H, Jiang Z. J. Org. Chem. 2015; 80: 8933
    • 5c You Y, Wu Z, Wang Z, Xu X, Zhang X, Yuan W. J. Org. Chem. 2015; 80: 8470
    • 5d Singha Roy SJ, Mukherjee S. Org. Biomol. Chem. 2017; 15: 6921
    • 5e Cui L, You Y, Mi X, Luo S. Org. Chem. Front. 2018; 5: 2313
    • 5f Han J, Zhang Y, Wu XY, Wong HN. C. Chem. Commun. 2019; 55: 397
    • 5g Zhang H, Shen Q. Tetrahedron 2021; 101: 132508
    • 6a Schedel H, Quaedflieg PJ. L. M, Broxtermann QB, Bisson W, Duchateau AL. L, Maes IC. H, Herzschuh R, Burger K. Tetrahedron: Asymmetry 2000; 11: 2125
    • 6b Harding RL, Bugg TD. H. Tetrahedron Lett. 2000; 41: 2729
    • 6c Strijtveen B, Kellogg RM. Tetrahedron 1987; 43: 5039
    • 6d Chen B.-C, Bednarz MS, Kocy OR, Sundeen JE. Tetrahedron: Asymmetry 1998; 9: 1641
    • 6e Lee S, Lee SY, Park YS. Synlett 2001; 1941
    • 6f Nam J, Lee S, Kim KY, Park YS. Tetrahedron Lett. 2002; 43: 8253
    • 6g Park KJ, Kim Y, Lee M, Park YS. Eur. J. Org. Chem. 2014; 1645
    • 7a Kim Y, Park KJ, Choi YS, Lee M, Park YS. Bull. Korean Chem. Soc. 2013; 34: 2531
    • 7b Ammazzalorso A, Amoroso R, Bettoni G, De Filippis B, Fantacuzzi M, Giampietro L, Maccallini C, Tricca ML. Eur. J. Org. Chem. 2006; 4088
    • 7c Kim HJ, Shin E, Chang J, Kim Y, Park YS. Tetrahedron Lett. 2005; 46: 4115
    • 7d Kim HJ, Kim Y, Choi ET, Lee MH, No ES, Park YS. Tetrahedron 2006; 62: 6303
    • 7e Kim Y, Lee MH, Choi ET, No ES, Park YS. Heterocycles 2007; 71: 5
    • 7f Kim Y, Park KJ, Lee M, Ryu H, Park YS. Bull. Korean Chem. Soc. 2014; 35: 265
    • 8a Choi YS, Park S, Park YS. Eur. J. Org. Chem. 2016; 2539
    • 8b Park W, Kim Y, Park YS. Eur. J. Org. Chem. 2019; 2671
    • 8c Kim Y, Choi YS, Hong SK, Park YS. Org. Biomol. Chem. 2019; 17: 4554
    • 8d Hong SK, Park W, Park YS. Tetrahedron 2020; 76: 130841
    • 8e Lee HR, Kim SY, Park MJ, Park YS. Org. Biomol. Chem. 2021; 19: 7655
  • 9 The absolute configurations of 1,4-benzothiazin-3-ones were assigned by assuming an inversion of stereochemistry in the reaction of α-bromoacetates (αR)-1ce or (αS)-11a,b. The occurrence of an SN2-type mechanism has been observed in the substitution of α-bromoacetates with various N-, O-, and S-nucleophiles.6–8
  • 10 General Procedure for the Preparation of 1,4-Benzothiazin-3(4H)-ones 2-Aminothiophenol (1.5 equiv) and Et3N (1.0 equiv) were added to a solution of α-bromoacetate (1.0 mmol) in CH2Cl2 (ca. 0.1 M) at room temperature. The reaction mixture was stirred at room temperature for 0.5 h, then trifluoroacetic acid (TFA, 3.0 equiv) was added. After stirring for 10 min, ethyl acetate was added for dilution. The resulting mixture was washed with saturated NaHCO3 solution, dried with anhydrous MgSO4, filtered, concentrated, and purified by column chromatography to afford a product. 2-(n-Butyl)-6-chloro-1,4-benzothiazin-3(4H)-one (20) A yellow oil was obtained in 73% yield from 11b. 1H NMR (400 MHz, CDCl3): δ = 10.1 (s, 1 H), 7.23–6.97 (m, 3 H), 3.41–3.38 (m, 1 H), 1.91–1.87 (m, 1 H), 1.60–1.54 (m, 2 H), 1.36–1.31 (m, 3 H), 0.91–0.87 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 169.1, 137.0, 132.6, 129.1, 123.9, 117.1, 117.0, 42.5, 29.5, 28.8, 22.1, 13.9. HRMS: m/z calcd for C12H15ClNOS [M+ + 1]: 256.0563; found: 256.0563. Chiral HPLC: 99:1 er, tR (major enantiomer) = 18.3 min; tR (minor enantiomer) = 14.9 min (Chiralcel OD column; 10% 2-propanol in hexane; 0.5 mL/min).
  • 11 We also found that the CIDR of α-ethyl- or α-n-hexyl-substituted α-bromoacetate derived from N-benzoyl-l-serine isopropyl ester gave ca. 81:19 dr under the same CIDR conditions.