Synlett 2023; 34(04): 332-336
DOI: 10.1055/a-1992-6596
letter

Homogenous Iron-Catalysed Deuteration of Electron-Rich Arenes and Heteroarenes

,
Kathrin Junge
,
This project has received funding from the European Union’s Horizon 2020 research and innovation programme (Grant No 862179).


Abstract

Deuterated organic molecules are of interest for many applications ranging from mechanistic investigations in basic organic and physical chemistry to the development of new pharmaceuticals. Thus, methodologies for isotope-labelling reactions continue to be important. Here, a convenient methodology for hydrogen/deuterium exchange reactions in electron-rich arenes is reported using simple iron salts and deuterium oxide as isotope source.

Supporting Information



Publication History

Received: 04 November 2022

Accepted after revision: 27 November 2022

Accepted Manuscript online:
04 December 2022

Article published online:
03 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Atzrodt J, Derdau V. J. Labelled Compd. Radiopharm. 2010; 53: 674
    • 1b Lorjaroenphon Y, Cadwallader KR. J. Agric. Food Chem. 2015; 63: 776
    • 1c Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Anal. Chem. 2021; 93: 567
    • 1d James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Chem. Rev. 2022; 122: 7562
    • 2a Shao M, Keum J, Chen J, He Y, Chen W, Browning JF, Jakowski J, Sumpter BG, Ivanov IN, Ma Y.-Z, Rouleau CM, Smith SC, Geohegan DB, Hong K, Xiao K. Nat. Commun. 2014; 5: 3180
    • 2b Li L, Jakowski J, Do C, Hong K. Macromolecules 2021; 54: 3555
    • 2c Tan X, Du J, Liu Y, Ba J, Yang X, Yang X, Liu M, Luo W. Polymer 2022; 251: 124891
  • 3 Bae HJ, Kim JS, Yakubovich A, Jeong J, Park S, Chwae J, Ishibe S, Jung Y, Rai VK, Son WJ, Kim S, Choi H, Baik MH. Adv. Opt. Mater. 2021; 9: 2100630
  • 4 Grimm JB, Xie L, Casler JC, Patel R, Tkachuk AN, Falco N, Choi H, Lippincott-Schwartz J, Brown TA, Glick BS, Liu Z, Lavis LD. JACS Au 2021; 1: 690
  • 5 Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
  • 6 Pirali T, Serafini M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276
  • 7 Schmidt C. Nat. Biotechnol. 2017; 35: 493
  • 8 Keam SJ, Duggan S. Drugs 2021; 81: 1915
  • 9 Treitler DS, Soumeillant MC, Simmons EM, Lin D, Inankur B, Rogers AJ, Dummeldinger M, Kolotuchin S, Chan C, Li J, Freitag A, Lora Gonzalez F, Smith MJ, Sfouggatakis C, Wang J, Benkovics T, Deerberg J, Simpson JH, Chen K, Tymonko S. Org. Process Res. Dev. 2022; 26: 1202
    • 10a Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
    • 10b Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
    • 10c Prakash G, Paul N, Oliver GA, Werz DB, Maiti D. Chem. Soc. Rev. 2022; 51: 3123
  • 11 Yang H, Hesk D. J. Labelled Compd. Radiopharm. 2020; 63: 296
    • 12a Yu RP, Hesk D, Rivera N, Pelczer I, Chirik PJ. Nature 2016; 529: 195
    • 12b Corpas J, Viereck P, Chirik PJ. ACS Catal. 2020; 10: 8640
    • 13a Yang H, Zarate C, Palmer WN, Rivera N, Hesk D, Chirik PJ. ACS Catal. 2018; 8: 10210
    • 13b Zarate C, Yang H, Bezdek MJ, Hesk D, Chirik PJ. J. Am. Chem. Soc. 2019; 141: 5034
  • 14 Yang H, Huang Z, Lehnherr D, Lam Y.-h, Ren S, Strotman NA. J. Am. Chem. Soc. 2022; 144: 5010
    • 15a Lu L, Li H, Zheng Y, Bu F, Lei A. CCS Chem. 2021; 3: 2669
    • 15b Norcott PL. Chem. Commun. 2022; 58: 2944
    • 15c Li P, Guo C, Wang S, Ma D, Feng T, Wang Y, Qiu Y. Nat. Commun. 2022; 13: 3774
    • 16a Pieters G, Taglang C, Bonnefille E, Gutmann T, Puente C, Berthet J.-C, Dugave C, Chaudret B, Rousseau B. Angew. Chem. Int. Ed. 2014; 53: 230
    • 16b Zuluaga-Villamil A, Mencia G, Asensio JM, Fazzini P.-F, Baquero EA, Chaudret B. Organometallics 2022; 41: 3313
  • 17 Valero M, Bouzouita D, Palazzolo A, Atzrodt J, Dugave C, Tricard S, Feuillastre S, Pieters G, Chaudret B, Derdau V. Angew. Chem. Int. Ed. 2020; 59: 3517
  • 18 Pfeifer V, Zeltner T, Fackler C, Kraemer A, Thoma J, Zeller A, Kiesling R. Angew. Chem. Int. Ed. 2021; 60: 26671
  • 19 Levernier E, Tatoueix K, Garcia-Argote S, Pfeifer V, Kiesling R, Gravel E, Feuillastre S, Pieters G. JACS Au 2022; 2: 801
  • 20 Li W, Rabeah J, Bourriquen F, Yang D, Kreyenschulte C, Rockstroh N, Lund H, Bartling S, Surkus A.-E, Junge K, Brückner A, Lei A, Beller M. Nat. Chem. 2022; 14: 334
  • 21 Bourriquen F, Rockstroh N, Bartling S, Junge K, Beller M. Angew. Chem. Int. Ed. 2022; 61: e202202423
  • 22 Li W, Wang M.-M, Hu Y, Werner T. Org. Lett. 2017; 19: 5768
  • 23 Dong B, Cong X, Hao N. RSC Adv. 2020; 10: 25475
  • 24 Munz D, Webster-Gardiner M, Fu R, Strassner T, Goddard WA, Gunnoe TB. ACS Catal. 2015; 5: 769
  • 25 Hadzic M, Braïda B, Volatron F. Org. Lett. 2011; 13: 1960
    • 26a Voges R, Heys JR, Moenius T. Preparation of Compounds Labeled with Tritium and Carbon-14 . John Wiley & Sons; Chichester: 2009
    • 26b Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DW. C. Science 2017; 358: 1182
    • 26c Koniarczyk JL, Hesk D, Overgard A, Davies IW, McNally A. J. Am. Chem. Soc. 2018; 140: 1990
  • 27 General Procedure for the Labelling of Electron-Rich (Hetero)arenes A 4 mL vial was charged under argon with the substrate (0.5 mmol), Fe(OTf)3 (1 mL from a stock solution of 14 mg in 10 mL CH3CN) and D2O (180 μL, 20 equiv). The reaction mixture was stirred overnight at 90 °C in an aluminium bloc. After return to room temperature, the media was diluted with EtOAc (2 mL) and a saturated aqueous NaHCO3 solution (1 mL). The aqueous phase was further extracted with EtOAc (3 × 2 mL). The combined organic phases were dried over MgSO4, filtered, and concentrated under reduced pressure. Obtained products were submitted for NMR analyses to determine the deuterium content. Typical reaction with 1,2,3,4-tetrahydroquinoline (1a, 65.5 mg) as substrate provided 1,2,3,4-tetrahydroquinoline-6,8-d 2 (2a, brown oil, quantitative). 1H NMR (300 MHz, CDCl3): δ = 7.07–6.96 (m, 2 H), 6.66 (t, J = 7.4 Hz, 7% 1H, 1 H), 6.58–6.44 (m, 8% 1H, 1 H), 3.81 (s, 1 H), 3.38–3.29 (m, 2 H), 2.82 (t, J = 6.4 Hz, 2 H), 2.06–1.91 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 144.8, 129.4 (m), 126.5 (m), 121.5, 116.7 (m), 113.9 (m), 42.0, 27.0, 22.2. ESI-MS: m/z calcd for C9H9D2N: 135; found: 135 (81), 134 (100), 133 (29), 132 (18), 131 (7), 120 (27), 106 (11), 93 (7), 79 (10), 66 (6).