Synlett 2023; 34(09): 1058-1062
DOI: 10.1055/a-1990-3283
letter

Copper-Catalyzed Decarboxylative Cascade Cyclization for the Synthesis of 2-Arylquinolines

,
Mohanreddy Pothireddy
,
Rambabu Dandela
R.D. thanks DST-SERB for a Ramanujan fellowship (SB/S2/RJN-075/2016), a core research grant (CRG/2018/000782), and an ICT-IOC startup grant.


Abstract

An efficient copper-catalyzed intermolecular decarboxylative cascade cyclization has been developed that uses readily accessible starting materials and less-expensive reagents. A one-pot reaction of an aryl aldehyde, an aniline, and acrylic acid permits the direct synthesis of 2-substituted quinolines through the sequential formation of C–N and C–C bonds. Furthermore, the three-component, one-pot, domino strategy features promising chemo- and regioselectivity and also tolerates a wide variety of substrates with excellent functional-group tolerance, high yields, a radical reaction pathway, and aerobic reaction conditions.

Supporting Information



Publication History

Received: 16 August 2022

Accepted after revision: 30 November 2022

Accepted Manuscript online:
30 November 2022

Article published online:
01 February 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 1b Michael JP. Nat. Prod. Rep. 2007; 24: 223
    • 1c Musiol R, Serda M, Hensel-Bielowka S. Curr. Med. Chem. 2010; 17: 1960
    • 1d Ahmed N, Brahmbhatt KG, Sabde S, Mitra D, Singh IP, Bhutani KK. Bioorg. Med. Chem. 2010; 18: 2872
    • 1e Solomon VR, Lee H. Curr. Med. Chem. 2011; 18: 1488
    • 1f Dahal UP, Joswig-Jones C, Jones JP. J. Med. Chem. 2012; 55: 280
    • 1g Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
    • 1h Eswaran S, Adhikari AV, Kumar RA. Eur. J. Med. Chem. 2010; 45: 957
    • 1i Kaila N, Janz K, DeBernardo S, Bedard PW, Camphausen RT, Tam S, Tsao DH. H, Keith JC. Jr, Nickerson-Nutter C, Shilling A, Young-Sciame R, Wang Q. J. Med. Chem. 2007; 50: 21
    • 2a Baragaña B, Hallyburton I, Lee M, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, Ruecker A, Upton LM, Abraham TS, Almeida MJ, Pradhan A, Porzelle A, Martínez MS, Bolscher JM, Woodland A, Luksch T, Norval S, Zuccotto F, Thomas J, Simeons F, Stojanovski L, Osuna-Cabello M, Brock PM, Churcher TS, Sala KA, Zakutansky SE, Jiménez-Díaz MB, Sanz LM, Riley J, Basak R, Campbell M, Avery VM, Sauerwein RW, Dechering KJ, Noviyanti R, Campo B, Frearson JA, Angulo-Barturen I, Ferrer-Bazaga S, Gamo FJ, Wyatt PG, Leroy D, Siegl P, Delves MJ, Kyle DE, Wittlin S, Marfurt J, Price RN, Sinden RE, Winzeler EA, Charman SA, Bebrevska L, Gray DW, Campbell S, Fairlamb AH, Willis PA, Rayner JC, Fidock DA, Read KD, Gilbert IH. Nature 2015; 522: 315
    • 2b Fröhlich T, Tsogoeva SB. J. Med. Chem. 2016; 59: 9668
    • 2c O’Neill PM, Ward SA. Angew. Chem. Int. Ed. 2015; 54: 13504
    • 2d Vyas VK, Variya B, Ghate MD. Eur. J. Med. Chem. 2014; 82: 385
    • 2e Meanwell NA. J. Med. Chem. 2016; 59: 7311
    • 2f Pitta E, Rogacki MK, Balabon O, Huss S, Cunningham F, Lopez-Roman EM, Joossens J, Augustyns K, Ballell L, Bates RH, Van der Veken P. J. Med. Chem. 2016; 59: 6709
    • 2g Shankerrao S, Bodke YD, Mety SS. Med. Chem. Res. 2013; 22: 1163
    • 2h Coa JC, Castrillón W, Cardona W, Ospina V, Muñoz JA, Vélez ID, Robledo SM. Eur. J. Med. Chem. 2015; 101: 746
    • 2i Manera C, Malfitano AM, Parkkari T, Lucchesi V, Carpi S, Fogli S, Bertini S, Laezza C, Ligresti A, Saccomanni G, Savinainen JR, Ciaglia E, Pisanti S, Gazzerro P, Di Marzo V, Nieri P, Macchia M, Bifulco M. Eur. J. Med. Chem. 2015; 97: 10
    • 2j Strekowski L, Say M, Henary M, Ruiz P, Manzel L, Macfarlane DE, Bojarski AJ. J. Med. Chem. 2003; 46: 1242
    • 3a Jégou G, Jenekhe SA. Macromolecules 2001; 34: 7926
    • 3b Agarwal AK, Jenekhe SA. Chem. Mater. 1996; 8: 579
    • 3c Lei Z.-Q, Li H, Li Y, Zhang X.-S, Chen K, Wang X, Sun J, Shi ZJ. Angew. Chem. Int. Ed. 2012; 51: 2690
    • 4a Weyesa A, Mulugeta E. RSC Adv. 2020; 10: 20784
    • 4b Nodes WJ, Nutt DR, Chippindale AM, Cobb AJ. A. J. Am. Chem. Soc. 2009; 131: 16016
    • 4c Franciò G, Faraone F, Leitner W. Angew. Chem. Int. Ed. 2000; 39: 1428
    • 5a Smith PW, Wyman PA, Lovell P, Goodacre C, Serafinowska HT, Vong A, Harrington F, Flynn S, Bradley DM, Porter R, Coggon S, Murkitt G, Searle K, Thomas DR, Watson JM, Martin W, Wu Z, Dawson LA. Bioorg. Med. Chem. Lett. 2009; 19: 837
    • 5b Atwell GJ, Baguley BC, Denny WA. J. Med. Chem. 1989; 32: 396
  • 6 Kim JK, Kim YH, Nam HT, Kim BT, Heo J.-N. Org. Lett. 2008; 10: 3543
  • 7 Chouhan G, Alper H. Org. Lett. 2008; 10: 4987
  • 8 Yoon J, Cheon C.-H. Asian J. Org. Chem. 2019; 8: 1631
  • 9 Wang Q, Wang M, Li H.-J, Zhu S, Liu Y, Wu Y.-C. Synthesis 2016; 48: 3985
  • 10 Liu B, Gao H, Yu Y, Wu W, Jiang H. J. Org. Chem. 2013; 78: 10319
    • 11a Li H.-J, Wang C.-C, Zhu S, Dai C.-Y, Wu Y.-C. Adv. Synth. Catal. 2015; 357: 583
    • 11b Zhang S.-L, Deng Z.-Q. Org. Biomol. Chem. 2016; 14: 8966
  • 12 Senadi GC, Hu W.-P, Garkhedkar AM, Boominathan SS, Wang J.-J. Chem. Commun. 2015; 51: 13795
  • 13 Xie F, Zhang M, Chen M, Lv W, Jiang H. ChemCatChem 2015; 7: 349
    • 14a Jang SS, Kim YH, Youn SW. Org. Lett. 2020; 22: 9151
    • 14b Zheng J, Li Z, Huang L, Wu W, Li J, Jiang H. Org. Lett. 2016; 18: 3514
    • 15a Zhang X, Ma X, Qiu W, Evans J, Zhang W. Green Chem. 2019; 21: 349
    • 15b Gharpure SJ, Nanda SK, Adate PA, Shelke YG. J. Org. Chem. 2017; 82: 2067
  • 16 Thirupathi N, Puri S, Reddy TJ, Sridhar B, Reddy MS. Adv. Synth. Catal. 2016; 358: 303
  • 17 Kumar GR, Kumar R, Rajesh M, Reddy MS. Chem. Commun. 2018; 54: 759
  • 18 Dupuy S, Lazreg F, Slawin AM. Z, Cazin CS. J, Nolan P. Chem. Commun. 2011; 47: 5455
  • 19 Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
    • 20a Yan H, Li X, Wang C, Wan B. Org. Chem. Front. 2017; 4: 1833
    • 20b Zhong M, Sun S, Cheng J, Shao Y. J. Org. Chem. 2016; 81: 10825
    • 21a Wang P, Wang X, Niu X, Zhu L, Yao X. Chem. Commun. 2020; 56: 4840
    • 21b Xi L.-Y, Zhang R.-Y, Zhang L, Chen S.-Y, Yu X.-Q. Org. Biomol. Chem. 2015; 13: 3924
  • 22 Yan Q, Chen Z, Liu Z, Zhang Y. Org. Chem. Front. 2016; 3: 678
  • 23 Wang B.-Q, Zhang C.-H, Tian X.-X, Lin J, Yan S.-J. Org. Lett. 2018; 20: 660
  • 24 Larionov OV, Stephens D, Mfuh A, Chavez G. Org. Lett. 2014; 16: 864
    • 25a Liu Y, Hu Y, Cao Z, Zhan X, Luo W, Liu Q, Guo C. Adv. Synth. Catal. 2018; 360: 2691
    • 25b Xu X, Yang Y, Zhang X, Yi W. Org. Lett. 2018; 20: 566
    • 25c Li C, Li J, An Y, Peng J, Wu W, Jiang H. J. Org. Chem. 2016; 81: 12189
    • 25d Phanindrudu M, Wakade SB, Tiwari DK, Likhar PR, Tiwari DK. J. Org. Chem. 2018; 83: 9137
    • 25e Mahato S, Mukherjee A, Santra S, Zyryanov GV, Majee A. Org. Biomol. Chem. 2019; 17: 7907
    • 26a Harry NA, Ujwaldev SM, Anilkumar G. Org. Biomol. Chem. 2020; 18: 9775
    • 26b Maji M, Panja D, Borthakur I, Kundu S. Org. Chem. Front. 2021; 8: 2673
  • 27 Ji X, Huang H, Li Y, Chen H, Jiang H. Angew. Chem. Int. Ed. 2012; 51: 7292
    • 28a Pal S, Chatterjee R, Santra S, Zyryanov G, Majee A. Adv. Synth. Catal. 2021; 363: 5300
    • 28b Bhukta S, Chatterjee R, Dandela R. Org. Biomol. Chem. 2022; 20: 3907
    • 28c Sarkar S, Chatterjee R, Mukherjee A, Mukherjee D, Mandal NC, Mahato S, Santra S, Zyryanov GV, Majee A. ACS Sustainable Chem. Eng. 2021; 9: 5557
    • 28d Chatterjee R, Santra S, Zyryanov GV, Majee A. Synthesis 2019; 51: 2371
    • 28e Chatterjee R, Santra S, Zyryanov GV, Majee A. J. Heterocycl. Chem. 2020; 57: 1863
    • 28f Samanta S, Santra S, Chatterjee R, Majee A. Org. Biomol. Chem. 2020; 18: 551
    • 28g Chatterjee R, Mukherjee A, Santra S, Zyryanov GV, Majee A. Tetrahedron 2019; 75: 130624
  • 29 CCDC 2193179 contains the supplementary crystallographic data for compound 4ax. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 30 2-Arylquinolines 4; General ProcedureIn a sealed tube, the appropriate benzaldehyde 1 (1.0 mmol), aniline 2 (1.0 mmol), acrylic acid (3a; 2.0 mmol), CuCl (20 mol%), and I2 (1.0 equiv) were dissolved in MeCN (2.0 mL), and the resulting mixture was stirred at 80 °C for 12 h under open air until the reaction was complete (TLC). The mixture was then cooled to r.t., diluted with EtOAc (15 mL), washed with H2O (10 mL), and extracted with EtOAc (3 × 5 mL). The extracts were dried (Na2SO4) and concentrated in vacuo, and the crude product was purified by column chromatography (silica gel, PE–EtOAc).2-Phenylquinoline (4aa)White solid; yield: 178 mg (87%). 1H NMR (400 MHz, CDCl3): δ = 8.27–8.12 (m, 4 H), 7.86 (dd, J = 19.4, 8.3 Hz, 2 H), 7.74 (t, J = 7.7 Hz, 1 H), 7.50 (dt, J = 26.1, 7.1 Hz, 4 H). 13C NMR (101 MHz, CDCl3): δ = 157.37, 148.17, 139.56, 136.92, 129.75, 129.65, 129.39, 128.87, 127.64, 127.47, 127.21, 126.35, 119.06.
    • 31a Li Y, Zhou X, Wu Z, Cao J, Ma C, He Y, Huang G. RSC Adv. 2015; 5: 88214
    • 31b Zhou B, Hou W, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 1322
    • 31c Fan Y, Wan W, Ma G, Gao W, Jiang H, Zhu S, Hao J. Chem. Commun. 2014; 50: 5733
    • 31d Li Q, Zhang S.-Y, He G, Ai Z, Nack WA, Chen G. Org. Lett. 2014; 16: 1764
    • 31e Feng Q, Song Q. J. Org. Chem. 2014; 79: 1867
    • 31f Min Q.-Q, Li N, Chen G.-L, Liu F. Org. Chem. Front. 2019; 6: 1200
    • 31g Lu X.-Y, Chen X.-K, Gao M.-T, Sun X.-M, Jiang R.-C, Wang J.-C, Yu L.-J, Gea M.-Y, Wei Z.-H, Liu Z. Org. Chem. Front. 2022; 9: 4712