Synlett 2023; 34(04): 337-342
DOI: 10.1055/a-1988-1916
letter

l-Proline-Catalyzed Three-Component Reaction of 4-Chloro-3-formylcoumarin, Sodium Sulfide, and α-Halo Ketones: A Direct Approach to Thieno[3,2-c]coumarins

Vandana Thotathil
a   Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
,
Raed M. Al-Zoubi
b   Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
c   Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, P.O. Box 2713, Doha, Qatar
d   Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
,
Mona Sawali
a   Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
,
Haw-Lih Su
e   Central Laboratories Unit, Qatar University, P.O. Box 2713, Doha, Qatar
,
a   Department of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
› Author Affiliations
This work was supported by a Qatar University Student Grant [QUST-2-CAS-2020-8] and the Medical Research Center (MRC)/Academic Health System (AHS) (Grant No. MRC-01-22-414).


Dedicated to Professor Hala S. Al-Easa of Qatar university on the occasion of her retirement.

Abstract

A new protocol for the synthesis of thieno[3,2-c]coumarins is disclosed. In this method, a 3-formyl-2-oxo-2H-chromene-4-thiolate anion is generated in situ by treatment of 4-chloro-3-formylcoumarin with sodium sulfide. This chromene-4-thiolate undergoes an l-proline-catalyzed substitution/Knoevenagel cascade with various α-halo ketones to afford the desired thienocoumarins in moderate to good isolated yields. This protocol eliminates the need for stoichiometric amounts of inorganic bases and the use of foul-smelling thiols. The reaction conditions tolerate a variety of α-halo ketones.

Supporting Information



Publication History

Received: 13 October 2022

Accepted after revision: 27 November 2022

Accepted Manuscript online:
27 November 2022

Article published online:
10 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Stefanachi A, Leonetti F, Pisani L, Catto M, Carrotti A. Molecules 2018; 23: 250
  • 2 Hussain MI, Syed QA, Khattak MN. K, Hafez B, Reigosa MJ, El-Keblawy A. Biologia (Cham, Switz.) 2019; 74: 863 DOI: 10.2478/s11756-019-00242-x.
  • 3 Khursheed A, Jain V. Nat. Prod. J. 2021; 11: 648
  • 4 Gulati S, Singh R, Sangwan S. RSC Adv. 2021; 11: 29130
  • 5 Adimule VM, Nandi SS, Kerur SS, Khadapure SA, Chinnam S. Top. Catal. 2022; DOI: 10.1007/s11244-022-01571-z.
  • 6 Bouhaoui A, Eddahmi M, Dib M, Khouili M, Aires A, Catto M, Bouissane L. ChemistrySelect 2021; 6: 5848
  • 7 Molnar M, Lončarić M, Kovač M. Curr. Org. Chem. 2020; 24: 4
  • 8 Moreira NM, Martelli LS. R, Corrêa AG. Beilstein J. Org. Chem. 2021; 17: 1952
  • 9 Shkoor M, Bayari R. Synlett 2021; 32: 795
  • 10 Alizadeh A, Farajpour B, Khanpour M. Synlett 2021; 32: 697
  • 11 Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Cancers 2020; 12: 1959
  • 12 Pan Y, Liu T, Wang X, Sun J. J. Enzyme Inhib. Med. Chem. 2022; 37: 616
  • 13 Li Z, Kong D, Liu Y, Li M. Genes Dis. 2022; 9: 80
  • 14 Thakur A, Singla R, Jaitak V. Eur. J. Med. Chem. 2015; 101: 476
  • 15 Feng D, Zhang A, Yang Y, Yang P. Arch. Pharm. (Weinheim, Ger.) 2020; 353: 1900380
  • 16 Li H, Yao Y, Li L. J. Pharm. Pharmacol. 2017; 69: 1253
  • 17 Prusty JS, Kumar A. Mol. Diversity 2020; 24: 1367
  • 18 Bai R.-R, Wu X.-M, Xu J.-Y. Chin. J. Nat. Med. 2015; 13: 721
  • 19 Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
  • 20 Sun X.-y, Liu T, Sun J, Wang X.-j. RSC Adv. 2020; 10: 10826
  • 21 Wang Y.-H, Avula B, Nanayakkara NP. D, Zhao J, Khan IA. J. Agric. Food Chem. 2013; 61: 4470
  • 22 Stiefel C, Schubert T, Morlock GE. ACS Omega 2017; 2: 5242
  • 23 Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, Teissier García AG, Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
  • 24 Advances in Structure and Activity Relationship of Coumarin Derivatives. Penta S. Elsevier; Amsterdam: 2016
  • 25 Salehian F, Nadri H, Jalili-Baleh L, Youseftabar-Miri L, Abbas Bukhari SN, Foroumadi A, Tüylü Küçükkilinç T, Sharifzadeh M, Khoobi M. Eur. J. Med. Chem. 2021; 212: 113034
  • 26 Archna SP, Chawla PA. Bioorg. Chem. 2020; 101: 104026
  • 27 Roman G. Arch. Pharm. (Weinheim, Ger.) 2022; 355: 2100462
  • 28 Liu S, Deng G.-J, Huang H. Synlett 2021; 32: 142
  • 29 Singh A, Singh G, Bedi PM. S. J. Heterocycl. Chem. 2020; 57: 2658
  • 30 Al-Zoubi RM, Al-Zoubi MS, Jaradat KT, McDonald R. Eur. J. Org. Chem. 2017; 5800
  • 31 Al-Zoubi RM, Ibdah A, Al-Jammal WK, Al-Zoubi MS, Almasalma AA, McDonald R. Synthesis 2018; 50: 384
  • 32 Di Maria F, Zangoli M, Barbarella G. Org. Mater. 2021; 03: 321
  • 33 Fernandes RS, Shetty NS, Mahesha P, Gaonkar SL. J. Fluoresc. 2022; 32: 19
  • 34 Al-Zoubi RM, Al-Jammal WK, El-Khateeb MY, McDonald R. Eur. J. Org. Chem. 2015; 3374
  • 35 Al-Zoubi RM, Al-Mughaid H, Al-Zoubi MA, Jaradat KT, McDonald R. Eur. J. Org. Chem. 2015; 5501
  • 36 Rani B, Agarwala A, Behera D, Verma VP, Singh AP, Shrivastava R. Dyes Pigm. 2021; 194: 109596
  • 37 Hasan AH, Murugesan S, Amran SI, Chander S, Alanazi MM, Hadda TB, Shakya S, Pratama MR. F, Das B, Biswas S, Jamalis J. Bioorg. Chem. 2022; 119: 105572
  • 38 Cai G, Yu W, Song D, Zhang W, Guo J, Zhu J, Ren Y, Kong L. Eur. J. Med. Chem. 2019; 174: 236
  • 39 El-Sawy ER, Abdelwahab AB, Kirsch G. Molecules 2021; 26: 3409
  • 40 Adib M, Rajai-Daryasarei S, Pashazadeh R, Jahani M, Yazzaf R, Amanlou M. Eur. J. Org. Chem. 2018; 3001
  • 41 Adib M, Rajai-Daryasarei S, Pashazadeh R, Jahani M, Amanlou M. Synlett 2018; 29: 1583
  • 42 Majumdar KC, Biswas A. Monatsh. Chem. 2004; 135: 1001
  • 43 El-Dean AM. K, Zaki RM, Geies AA, Radwan SM, Tolba MS. Russ. J. Bioorg. Chem. 2013; 39: 553
  • 44 Weißenfels M, Hantschmann A, Steinführer T, Birkner E. Z. Chem. (Leipzig, Ger.) 1989; 29: 166
  • 45 Akchurin IO, Yakhutina AI, Bochkov AY, Solovjova NP, Traven VF. Heterocycl. Commun. 2018; 24: 85
  • 46 Shi L, Yu H, Zeng X, Yang S, Gong S, Xiang H, Zhang K, Shao G. New J. Chem. 2020; 44: 6232
  • 47 Iaroshenko VO, Erben F, Mkrtchyan S, Hakobyan A, Vilches-Herrera M, Dudkin S, Bunescu A, Villinger A, Sosnovskikh VY, Langer P. Tetrahedron 2011; 67: 7946
  • 48 Yang L, Liu M, Sheng K, Li X, Du J, Ning Y, Wang X, Li J, Zhang Y, Wu S. New J. Chem. 2019; 43: 4188
  • 49 Lee T.-H, Jayakumar J, Cheng C.-H, Chuang S.-C. Chem. Commun. 2013; 49: 11797
  • 50 Fu L, Li S, Cai Z, Ding Y, Guo X.-Q, Zhou L.-P, Yuan D, Sun Q.-F, Li G. Nat. Catal. 2018; 1: 469
  • 51 Iaroshenko VO, Ali S, Mkrtchyan S, Gevorgyan A, Babar TM, Semeniuchenko V, Hassan Z, Villinger A, Langer P. Tetrahedron Lett. 2012; 53: 7135
  • 52 Shkoor M, Su H.-L, Ahmed S, Hegazy S. J. Heterocycl. Chem. 2020; 57: 813
  • 53 Fatunsin O, Iaroshenko V, Dudkin S, Shkoor M, Volochnyuk D, Gevorgyan A, Langer P. Synlett 2010; 1533
  • 54 Peña J, Moro RF, Basabe P, Marcos IS, Díez D. RSC Adv. 2012; 2: 8041
  • 55 Thieno[3,2-c]chromen-4-ones 5ag; General ProcedureA solution of 4-chloro-3-formylcoumarin (1; 1.0 equiv, 1.0 mmol) in MeCN (5.0 mL) was added to a solution of Na2S·9 H2O (1.0 mmol, 1.0 equiv) in H2O (5.0 mL) at a low temperature (<10 °C), and the resultant solution was stirred at <10 °C for 30 min. The appropriate α-halo ketone (1.0 mmol, 1.0 equiv) and l-proline (0.3 mmol, 0.3 equiv) were added, and the temperature was increased to 60 °C. The mixture was then stirred at 60 °C until a solid precipitated. The solid was then collected and purified by crystallization from MeCN.2-Benzoyl-4H-thieno[3,2-c]chromen-4-one (5a) White crystals; yield: 0.19 g (63%); mp 258–260 °C. 1H NMR (600 MHz, CDCl3): δ = 7.37 (t, J = 7.8 Hz, 1 H), 7.44 (d, J = 7.8 Hz, 1 H), 7.54 (t, J = 7.2 Hz, 2 H), 7.58 (t, J = 7.2 Hz, 1 H), 7.65 (t, J = 7.8 Hz, 1 H), 7.81 (d, J = 7.8 Hz, 1 H), 7.90 (d, J = 7.2 Hz, 2 H), 8.12 (s, 1 H). 13C NMR (150 MHz, CDCl3): δ = 116.4, 117.8, 124.3, 125.2, 125.6, 128.8, 129.2, 132.3, 133.1, 133.5, 136.6, 143.8, 152.0, 153.8, 156.9, 187.6. 1H–1H COSY: The continuous cross-peaks at δ = 7.81–7.37–7.58–7.44 and 7.90 (2 H)–7.58 (2 H)–7.65 (1 H) represent the protons on the coumarin and benzoyl groups, respectively. Anal. calcd for C18H10O3S: C, 70.58; H, 3.29. Found: C, 70.67; H, 3.31. MS (ESI): m/z (%): 307 (20), 306 (100), 229 (60), 105 (49), 77 (38).
  • 56 Venkatanarayana M, Dubey PK. J. Heterocycl. Chem. 2014; 51: 877
  • 57 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
  • 58 Dalko PI, Moison L. Angew. Chem. Int. Ed. 2004; 43: 5138