Synlett 2023; 34(20): 2429-2432
DOI: 10.1055/s-0042-1751496
cluster
Special Issue Dedicated to Prof. Hisashi Yamamoto

Chiral Betaine-Mediated Efficient Organocatalytic Asymmetric Isomerization of β,γ-Unsaturated Butenolides

Yiqun Zeng
a   Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. of China
,
Chao Fei
b   Department of Chemistry, Brandeis University, Waltham, MA 02454-9110, USA
,
Xiao Zhou
b   Department of Chemistry, Brandeis University, Waltham, MA 02454-9110, USA
,
Jisheng Luo
a   Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. of China
,
Li Deng
a   Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. of China
› Author Affiliations
We gratefully acknowledge funding from the National Natural Science Foundation of China (U22A20389) and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2020R01004).


Dedicated to Professor Hisashi Yamamoto on the occasion of his 80th birthday.

Abstract

An asymmetric isomerization of β,γ-unsaturated butenolides with a newly developed betaine catalyst at a 0.2–2 mol% loading, an improvement upon available methods that use 0.5–2.0 mol% catalyst.

Supporting Information



Publication History

Received: 03 July 2023

Accepted after revision: 22 August 2023

Article published online:
20 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Liu Y.-H, Zhang S, Jung J.-H, Xu T.-H. In Bioactive Heterocycles V . Khan MT. H. Springer; Berlin: 2007: 231
  • 2 Ye Y, Wang H, Chu J.-H, Chou G.-X, Chen S.-B, Mo H.-B, Fong W.-F, Yu Z.-L. J. Ethnopharmacol. 2011; 136: 279
    • 3a Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 16410
    • 3b Uchida M, Takamatsu S, Arima S, Miyamoto KT, Kitani S, Nihira T, Ikeda H, Nagamitsu T. J. Antibiot. 2011; 64: 781
  • 4 Charan RD, McKee TC, Boyd MR. J. Nat. Prod. 2001; 64: 661
  • 5 Mao B, Fañanás-Mastral M, Feringa BL. Chem. Rev. 2017; 117: 10502
    • 6a Szlosek M, Franck X, Figadère B, Cavé A. J. Org. Chem. 1998; 63: 5169
    • 6b Frings M, Atodiresei I, Runsink J, Raabe G, Bolm C. Chem. Eur. J. 2009; 15: 1566
    • 6c Yang Y, Zheng K, Zhao J, Shi J, Lin L, Liu X, Feng X. J. Org. Chem. 2010; 75: 5382
    • 6d Luo J, Wang H, Han X, Xu L.-W, Kwiatkowski J, Huang K.-W, Lu Y. Angew. Chem. Int. Ed. 2011; 50: 1861
    • 7a Martin SF, Lopez OD. Tetrahedron Lett. 1999; 40: 8949
    • 7b Yin L, Takada H, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2013; 52: 7310
    • 8a Kitajima H, Katsuki T. Synlett 1997; 568
    • 8b Kitajima H, Ito K, Katsuki T. Tetrahedron 1997; 53: 17015
    • 8c Zhang Y, Yu C, Ji Y, Wang W. Chem. Asian J. 2010; 5: 1303
    • 8d Zhang W, Tan D, Lee R, Tong G, Chen W, Qi B, Huang K.-W, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2012; 51: 10069
  • 9 Shaw SA, Aleman P, Vedejs E. J. Am. Chem. Soc. 2003; 125: 13368
    • 10a Wu Y.-W, Singh R.-P, Deng L. J. Am. Chem. Soc. 2011; 133: 12458
    • 10b Cheng X.-P, Li T.-Y, Gutman K, Zhang L.-M. J. Am. Chem. Soc. 2021; 143: 10876
  • 11 Hugelshofer CL, Magauer T. J. Am. Chem. Soc. 2015; 137: 3807
  • 12 Zhou X, Wu Y.-W, Deng L. J. Am. Chem. Soc. 2016; 138: 12297
  • 13 Deng Y, Shi X.-H, Shi G.-F, Lu X.-Y, Luo J.-S, Deng L. JACS Au 2022; 2: 2678
  • 14 Wu Y.-W, Deng L. J. Am. Chem. Soc. 2012; 134: 14334
    • 15a Wu Y.-W, Hu L, Li Z, Deng L. Nature 2015; 523: 445
    • 15b Hu L, Wu Y.-W, Li Z, Deng L. J. Am. Chem. Soc. 2016; 138: 15817
    • 15c Hu B, Deng L. Angew. Chem. Int. Ed. 2018; 57: 2233
    • 15d Li Z, Hu B, Wu Y.-W, Fei C, Deng L. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 1730
    • 15e Han X.-L, Hu B, Fei C, Li Z, Yu Y, Cheng C, Foxman B, Luo J.-S, Deng L. J. Am. Chem. Soc. 2023; 145: 4400
    • 15f Liu X.-Y, Du K, Luo J.-S, Deng L. CCS Chem. 2023; 5: 1509
  • 16 Butenolides 2A–M; General Procedure Catalyst QD-8 was mixed with KOH (5.6 mg per 0.001 mmol catalyst) in CHCl3 (0.1 mL per 0.001 mmol catalyst), and the mixture was stirred at r.t. for 30 min. A volume of the clear solution containing the amount of catalyst indicated in Table 2 was collected and added to a solution of the appropriate butenolide 1 (0.2 mmol) in CHCl3 (0.1 M). The resulting mixture was stirred for 10 min at the temperature indicated in Table 2. 50 wt% aq KOH (4.4 μL) was added, and the mixture was stirred for the length of time as indicated in Table 2. The reaction mixture was then passed through a plug of Celite, which was subsequently washed with Et2O (3 × 3.0 mL). The filtrate was concentrated in vacuo, and the residue was purified by flash column chromatography [silica gel, Et2O–hexane (1:10 to 1:3)]. (5R)-4-Ethyl-5-methylfuran-2(5H)-one (2L) Colorless oil; yield: 23 mg (90%, 96% ee). IR (CHCl3): 751, 856, 906, 941, 1037, 1082, 1174, 1254, 1293, 1460, 1639, 1746, 2936, 2977 cm–1. 1H NMR (600 MHz, CDCl3): δ = 5.78 (s, 1 H), 4.94 (q, J = 6.6, 1 H), 2.46–2.36 (m, 1 H), 2.28 (m, 1 H), 1.44 (d, J = 6.6 Hz, 3 H), 1.23 (t, J = 7.2 Hz, 3 H). 13C NMR (151 MHz, CDCl3): δ = 175.8, 173.2, 114.4, 80.3, 21.3, 18.3, 11.3. HRMS (ESI): m/z [M + H]+ calcd for C7H11O2: 127.0754; found: 127.0758.