Synlett 2023; 34(07): 709-728
DOI: 10.1055/s-0042-1751369
account
Chemical Synthesis and Catalysis in India

Recent Advances in [3+2]-Cycloaddition-Enabled Cascade Reactions: Application to Synthesize Complex Organic Frameworks

Shivam. Shivam
,
Kailas A. Chavan
,
Amar N. S. Chauhan
,
Rohan D. Erande
R.E. expresses gratitude to Indian Institute of Technology (ITT) ­Jodhpur for the SEED Grant (I/SEED/RDE/20190023) as well as the infrastructure provided by IIT Jodhpur.


Abstract

Many natural products and biologically important complex organic scaffolds have convoluted structures around their core skeleton. Interestingly, with just changing the outskirts, the core reflects new and unique degrees of various physical and chemical properties. A very common but intriguing core is a five-membered ring horning heaps of organic molecules crafts. The power of [3+2] cycloaddition reactions to generate five-membered ring systems allocate chemists to envision synthetic procedures of wonder molecules and if it is facilitating a cascade sequence, then the end product will imbibe significant level of complexity having applications in medicinal and pharmaceutical fields. This Account highlights the broad interest in assembling recent advances in cascade reactions involving [3+2] cycloaddition as the power tool in order to conceive breakthrough organic architectures reported in the last ten years. We foresee that our comprehensive collection of astonishing [3+2] cycloaddition enabled cascades will provide valuable insights to polycyclic molecular construction and perseverant approach towards nonconventional synthetic procedures to the organic community.

1 Introduction

2 Synthesis of Oxindoles Skeleton

3 Synthesis of Oxazoles Skeleton

4 Synthesis of Oxadiazoles Skeleton

5 Synthesis of Nitrogen-Containing Heterocycles

6 Synthesis via Formal [3+2] Cycloaddition

7 Synthesis of Miscellaneous Scaffolds

8 Conclusion



Publikationsverlauf

Eingereicht: 30. Mai 2022

Angenommen nach Revision: 08. August 2022

Artikel online veröffentlicht:
28. September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Ríos-Gutiérrez M, Domingo LR. Eur. J. Org. Chem. 2019; 267
  • 2 Breugst M, Reissig H. Angew. Chem. Int. Ed. 2020; 59: 12293
  • 3 Hoffmann R, Woodward RB. J. Am. Chem. Soc. 1965; 87: 2046
  • 4 Huisgen R. J. Org. Chem. 1976; 41: 403
  • 5 Young IS, Kerr MA. Angew. Chem. 2003; 115: 3131
  • 6 Shivam Shivam, Tiwari G, Kumar M, Chauhan AN. S, Erande RD. Org. Biomol. Chem. 2022; 20: 3653
  • 7 Mali G, Chauhan AN. S, Chavan KA, Erande RD. Asian J. Org. Chem. 2021; 10: 2848
  • 8 Zhang J, Jiang H, Zhu S. Adv. Synth. Catal. 2017; 359: 2924
  • 9 Muthengi A, Erickson J, Muriph RE, Zhang W. J. Org. Chem. 2019; 84: 5927
  • 10 Martinez-Ariza G, Dietrich J, De Moliner F, Hulme C. Synlett 2013; 24: 1801
  • 11 Sears JE, Boger DL. Acc. Chem. Res. 2016; 49: 241
  • 12 Lin Z, Li C, Zhou Z, Xue S, Gao J, Ye Q, Li Y. Synlett 2019; 30: 1442
  • 13 Nicolaou KC, Lister T, Denton RM, Gelin CF. Angew. Chem. Int. Ed. 2007; 46: 7501
  • 14 Rudrangi SR. S, Bontha VK, Manda VR, Bethi S. Asian J. Res. Chem. 2011; 4: 335
  • 15 Tian L, Hu X.-Q, Li Y.-H, Xu P.-F. Chem. Commun. 2013; 49: 7213
  • 16 Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
  • 17 Du D, Xu Q, Li X.-G, Shi M. Chem. Eur. J. 2016; 22: 4733
  • 18 Duan S.-W, Li Y, Liu Y.-Y, Zou Y.-Q, Shi D.-Q, Xiao W.-J. Chem. Commun. 2012; 48: 5160
  • 19 Bagley MC, Buck RT, Hind SL, Moody CJ. J. Chem. Soc., Perkin Trans. 1 1998; 591
  • 20 Kumar CV. S, Holyoke CW, Keller TM, Fleming FF. J. Org. Chem. 2020; 85: 9153
  • 21 Zhang X, Zhang W. Curr. Opin. Green Sustain. Chem. 2018; 11: 65
  • 22 Sugita S, Takeda N, Tohnai N, Miyata M, Miyata O, Ueda M. Angew. Chem. Int. Ed. 2017; 56: 2469
  • 23 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
  • 24 Hsieh M.-T, Lee K.-H, Kuo S.-C, Lin H.-C. Adv. Synth. Catal. 2018; 360: 1605
  • 25 Boström J, Hogner A, Llinàs A, Wellner E, Plowright AT. J. Med. Chem. 2012; 55: 1817
  • 26 Campbell EL, Skepper CK, Sankar K, Duncan KK, Boger DL. Org. Lett. 2013; 15: 4
  • 27 Sears JE, Barker TJ, Boger DL. Org. Lett. 2015; 17: 5460
  • 28 Larin AA, Fershtat LL, Ananyev IV, Makhova NN. ­Tetrahedron Lett. 2017; 58: 3993
  • 29 Gasco A, Fruttero R, Sorba G, Di Stilo A, Calvino R. Pure Appl. Chem. 2004; 76: 973
  • 30 He C, Gao H, Imler GH, Parrish DA, Shreeve JM. J. Mater. Chem. A 2018; 6: 9391
  • 31 Khan I, Shareef MA, Kumar CG. Eur. J. Med. Chem. 2019; 178: 1
  • 32 Wu M, Wang R, Chen F, Chen W, Zhou Z, Yi W. Org. Lett. 2020; 22: 7152
  • 33 Borad MA, Bhoi MN, Prajapati NP, Patel HD. Synth. Commun. 2014; 44: 897
  • 34 Liu Y, Zhang X, Zeng R, Zhang Y, Dai Q.-S, Leng H.-J, Gou X.-J, Li J.-L. Molecules 2017; 22: 1882
  • 35 Wang B, Liang M, Tang J, Deng Y, Zhao J, Sun H, Tung C.-H, Jia J, Xu Z. Org. Lett. 2016; 18: 4614
  • 36 Allin SM, James SL, Martin WP, Smith TA, Elsegood MR. J. Chem. Soc., Perkin Trans. 1 2001; 3029
  • 37 Maryanoff BE, McComsey DF, Gardocki JF, Shank RP, Costanzo MJ, Nortey SO, Schneider CR, Setler PE. J. Med. Chem. 1987; 30: 1433
  • 38 Vila C, Lau J, Rueping M. Beilstein J. Org. Chem. 2014; 10: 1233
  • 39 Fann WE, Pitts WM, Wheless JC. Pharmacotherapy 1982; 2: 72
  • 40 Greenblatt DJ, Allen MD, Shader RI. Clin. Pharmacol. Ther. 1977; 21: 355
  • 41 Calcaterra NE, Barrow JC. ACS Chem. Neurosci. 2014; 5: 253
  • 42 Murase T, Fujita M. Chem. Rec. 2010; 10: 342
  • 43 Wang Q, Yuan T, Liu Q, Xu Y, Xie G, Lv X, Ding S, Wang X, Li C. Chem. Commun. 2019; 55: 8398
  • 44 Aaghaz S, Sharma K, Jain R, Kamal A. Eur. J. Med. Chem. 2021; 216: 113321
  • 45 Chandrasekhar D, Borra S, Kapure JS, Shivaji GS, Srinivasulu G, Maurya RA. Org. Chem. Front. 2015; 2: 1308
  • 46 Grella B, Dukat M, Young R, Teitler M, Herrick-Davis K, Gauthier CB, Glennon RA. Drug Alcohol Depend. 1998; 50: 99
  • 47 Piechowska P, Zawirska-Wojtasiak R, Mildner-Szkudlarz S. Nutrients 2019; 11: 814
  • 48 Boursereau Y, Coldham I. Bioorg. Med. Chem. Lett. 2004; 14: 5841
  • 49 Scatton B, Zivkovic B, Dedek J. J. Pharmacol. Exp. Ther. 1980; 215: 494
  • 50 Tam SW, Worcel M, Wyllie M. Pharmacol. Ther. 2001; 91: 215
  • 51 Chiou W.-H, Lin G.-H, Hsu C.-C, Chaterpaul SJ, Ojima I. Org. Lett. 2009; 11: 2659
  • 52 Spindola HM, Vendramini-Costa DB, Rodrigues MT. Jr, Foglio MA, Pilli RA, Carvalho JE. Pharmacol. Biochem. Behav. 2012; 102: 133
  • 53 Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
  • 54 Olivier WJ, Smith JA, Bissember AC. Chem. Rec. 2022; 22: e202100277
  • 55 Felpin F, Lebreton J. Eur. J. Org. Chem. 2003; 3693
  • 56 Kumar I, Mir NA, Gupta VK, Rajnikant Rajnikant. Chem. Commun. 2012; 48: 6975
  • 57 Phillips EM, Chan A, Scheidt KA. Aldrichimica Acta 2009; 42: 55
  • 58 Tang X.-T, Yang F, Zhang T.-T, Liu Y.-F, Liu S.-Y, Su T.-F, Lv D.-C, Shen W.-B. Catalysts 2020; 10: 350
  • 59 Ren Q, Li M, Yuan L, Wang J. Org. Biomol. Chem. 2017; 15: 4731
  • 60 Li X, Li S.-J, Wang Y, Wang Y, Qu L.-B, Li Z, Wei D. Catal.: Sci. Technol. 2019; 9: 2514
  • 61 Watanabe M, Koike H, Ishiba T, Okada T, Seo S, Hirai K. Bioorg. Med. Chem. 1997; 5: 437
  • 62 Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
  • 63 Jung E.-K, Leung E, Barker D. Bioorg. Med. Chem. Lett. 2016; 26: 3001
  • 64 Yamada T, Shibata Y, Kawauchi S, Yoshizaki S, Tanaka K. Chem. Eur. J. 2018; 24: 5723
  • 65 Haidar S, Marminon C, Aichele D, Nacereddine A, Zeinyeh W, Bouzina A, Berredjem M, Ettouati L, Bouaziz Z, Le Borgne M. Molecules 2019; 25: 97
  • 66 Tikhomirov AS, Lin C.-Y, Volodina YL, Dezhenkova LG, Tatarskiy VV, Schols D, Shtil AA, Kaur P, Chueh PJ, Shchekotikhin AE. Eur. J. Med. Chem. 2018; 148: 128
  • 67 Xia L, Lee YR. RSC Adv. 2014; 4: 36905
  • 68 Zanatta N, Alves SH, Coelho HS, Borchhardt DM, Machado P, Flores KM, Da Silva FM, Spader TB, Santurio JM, Bonacorso HG. Bioorg. Med. Chem. 2007; 15: 1947
  • 69 Mojumdar S, Miklovič J, Krutošíková A, Valigura D, Stewart J. J. Therm. Anal. Calorim. 2005; 81: 211
  • 70 Shiotani S. Heterocycles 1997; 5: 975
  • 71 Yue WS, Li JJ. Org. Lett. 2002; 4. 2201
  • 72 Liu J, Zhu L, Wan W, Huang X. Org. Lett. 2020; 22: 3279
  • 73 Hao W, Wu X, Sun JZ, Siu JC, MacMillan SN, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
  • 74 Hao W, Harenberg JH, Wu X, MacMillan SN, Lin S. J. Am. Chem. Soc. 2018; 140: 3514
  • 75 Gronowitz S. Thiophene and Its Derivatives. In The Chemistry of Heterocyclic Compounds, Vol. 4, Part 4. John Wiley & Sons; Hoboken: 2009
  • 76 Zhai S, Zhang X, Cheng B, Li H, Li Y, He Y, Li Y, Wang T, Zhai H. Chem. Commun. 2020; 56: 3085
  • 77 Zhu C.-F, Zhang J, Zhu Y.-L, Hao W.-J, Tu S.-J, Wang D.-C, Jiang B. Org. Chem. Front. 2021; 8: 1952
  • 78 Gleave DM, Brickner SJ, Manninen PR, Allwine DA, Lovasz KD, Rohrer DC, Tucker JA, Zurenko GE, Ford CW. Bioorg. Med. Chem. Lett. 1998; 8: 1231