RSS-Feed abonnieren
DOI: 10.1055/s-0031-1290081
Titanium(IV) Enolates of 2-Nitrocarboxylic Esters and Their Oxidative Chlorination. A Convenient Route to α-Chloro-α-nitrocarboxylates
Publikationsverlauf
Publikationsdatum:
03. Januar 2012 (online)

Abstract
A new method for the synthesis of 2-chloro-2-nitrocarboxylic esters from 2-nitrocarboxylates is described. The procedure consists of the oxidative chlorination of titanium(IV) enolates of 2-nitro esters in the presence of ammonium nitrate. Esters of 2-chloro-2-nitrocarboxylic acids are formed in very good to quantitative yields. Application of this method for the chlorination of α,α′-dinitrodicarboxylates leads to α,α′-dichloro-α,α′-dinitrocarboxylic esters with high meso-diastereoselectivity. The absence of ammonium nitrate from the reaction mixture affects the reduction of nitro groups and leads to partial transformation of 2-nitrocarboxylic esters into 2-(hydroxyimino)carboxylates.
Key words
oxidative chlorination - titanium enolates - diastereoselectivity - esters - transition states
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Tyrkov AG.Sukhenko LT. Pharm. Chem. J. 2002, 36: 14Reference Ris Wihthout Link - 1b
Jahn U.Rudakov D. Org. Lett. 2006, 20: 4481Reference Ris Wihthout Link - 1c
Hansen HM.Longbottom DA.Ley SV. Chem. Commun. 2006, 4838Reference Ris Wihthout Link - 2a
Kunetsky RA.Dilman AD.Ioffe SL.Struchkova MI.Strelenko YA.Tartakovsky VA. Org. Lett. 2003, 5: 4905Reference Ris Wihthout Link - 2b
Kunetsky RA.Dilman AD.Struchkova MI.Belyakov PA.Tartakovsky VA.Ioffe SL. Synthesis 2006, 2265Reference Ris Wihthout Link - 3
Kunetsky RA.Dilman AD.Struchkova MI.Belyakov PA.Korlyukov AA.Ioffe SL.Tartakovsky VA. Mendeleev Commun. 2007, 17: 108Reference Ris Wihthout Link - 4a
Al-Khalil SI.Bowman WR.Gaitonde K.Marley NA.Richardson GD. J. Chem. Soc., Perkin Trans. 2 2001, 1557Reference Ris Wihthout Link - 4b
Khisamutdinov GKh.Lyapin NM.Nikitin VG.Slovetskii VI.Fainzil’berg AA. Russ. Chem. Bull. 2009, 58: 2178Reference Ris Wihthout Link - 5
Yurtanov AI.Baidildaeva SK.Chekhlov AN.Zefirov NS. Russ. Chem. Bull. 1994, 43: 816Reference Ris Wihthout Link - 6a
Martynov IV.Kruglyak YuL.Makarov SP.
Zh. Obshch. Khim. 1963, 33: 3382Reference Ris Wihthout Link - 6b
Yurtanov AI.Martynov IV. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1989, 38: 2497Reference Ris Wihthout Link - 7a
Yurtanov AI.Martynov IV. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1989, 38: 2497Reference Ris Wihthout Link - 7b
Martynov IV.Stoyankova EV.Yurtanov AI. Zh. Org. Khim. 1982, 18(9): 1849Reference Ris Wihthout Link - 8
Martynov IV.Zavel’skii VO.Kovalenko SV.Yurtanov AI. Dokl. Chem. 1983, 269Reference Ris Wihthout Link - 9a
Plewa MJ.Wagner ED.Jazwierska P.Richardson SD.Chen PH.McKague AB. Environ. Sci. Technol. 2004, 38: 62Reference Ris Wihthout Link - 9b
Martynov IV.Postnova LV.Bikkineev RKh.Yurtanov AI. Zh. Org. Khim. 1984, 20(8): 1724Reference Ris Wihthout Link - 10
Kissinger LW.Ungnade HE. J. Org. Chem. 1958, 23: 1517Reference Ris Wihthout Link - 11a
Macbeth AK.Traill D. J. Chem. Soc. 1925, 896Reference Ris Wihthout Link - 11b
Adolph HG.Oersterling RE.Sitzmann M. J. Org. Chem. 1968, 33: 4296Reference Ris Wihthout Link - 12
Brintzinger H.Janecke J. Chem. Ber. 1950, 83: 103Reference Ris Wihthout Link - 13
Amrollah-Madjdabadi A.Beugelmans R.Lechevallier A. Synthesis 1986, 828Reference Ris Wihthout Link - 14
Yurtanov AI.Adkhamova ZM.Baidildaeva SK. Russ. Chem. Bull. 1992, 41(5): 891Reference Ris Wihthout Link - 15
Cież D. Tetrahedron 2007, 63: 4510Reference Ris Wihthout Link - 16
Cież D. Org. Lett. 2009, 11: 4282Reference Ris Wihthout Link - 17
Kornblum N.Blackwood RK.Powers JW. J. Am. Chem. Soc. 1957, 79: 2507Reference Ris Wihthout Link - 19
Kise N.Kumada K.Terao Y.Ueda N. Tetrahedron 1998, 54: 2697Reference Ris Wihthout Link - 20a
Burns EA. Anal. Chim. Acta 1962, 26: 143Reference Ris Wihthout Link - 20b
Al-Wahid A.Townshend A. Anal. Chim. Acta 1986, 186: 289Reference Ris Wihthout Link - 20c
Yang F.Troncy E.Francur M.Vinet B.Vinay P.Czaika G.Blaise G. Clin. Chem. 1997, 43: 657Reference Ris Wihthout Link - 20d
Baezzat MR.Parsaeian G.Zare MA. Quim. Nova 2011, 34: 607Reference Ris Wihthout Link - 22
Matsumura Y.Nishimura M.Hiu H.Watanabe M.Kise N. J. Org. Chem. 1996, 61: 2809Reference Ris Wihthout Link - 24
Reinheckel H.Czech H. Z. Chem. 1978, 18: 214Reference Ris Wihthout Link
References and notes
Crystallographic data (excluding structure factors) for the structure of 3g have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 843131. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033 or e-mail: deposit@ccdc.cam.ac.uk
21Oxidative chlorination of α-nitrocarboxylic esters; representative synthesis of 3e: A solution of dimethyl 2,7-dinitrooctanedioate²4 (1e; 1.08 g, 3.69 mmol) in CH2Cl2 (40 mL) was cooled under argon to -15 ˚C and TiCl4 (0.90 mL, 1.55 g, 8.16 mmol, 2.2 equiv) was added in one portion. The reaction mixture was stirred for 20 min, then DIEA (1.41 mL, 1.05 g, 8.16 mmol, 2.2 equiv) in CH2Cl2 (4 mL) was added dropwise to form the orange titanium(IV) enolate. The ice bath was removed and the solution was gradually warmed to r.t. Fine pulverized ammonium nitrate NH4NO3 (0.59 g, 7.38 mmol, 2 equiv) was added and the flask was protected against moisture. The reactants were stirred for 7 days, then the solution was poured into concentrated aqueous NH4Cl (60 mL), stirred, and the lower organic layer was separated and dried with anhydrous MgSO4. The crude product isolated after evaporation of CH2Cl2 and purified by column chromatography (silica gel, 230-400 mesh; CHCl3-MeOH, 30:1) to give 3e (1.13 g) as a colorless solid. Mp = 77-78 ˚C. TLC: R f = 0.70 (Merck silica gel 60; CHCl3-MeOH, 30:1). Anal. Calcd for C10H14Cl2N2O8: C, 33.26; H, 3.91; N, 7.76. Found: C, 33.41; H, 3.99; N, 7.59. ¹H NMR (CDCl3, 300 MHz): δ = 3.90 (s, 6 H, OCH3), 2.63 (m, 2 H, CH aHb), 2.48 (m, 2 H, CHa H b), 1,67 (m, 2 H, CH cHd), 1.35 (m, 2 H, CHc H d). ¹³C NMR (CDCl3, 75 MHz): δ = 163.1 (COOMe), 101.5 (C-NO2), 54.7 (OCH3), 38.3 (CH2), 22.6 (CH2). IR (ATR): 2959, 1756, 1566, 1436, 1343, 1264, 1242, 1179, 1103, 1010 cm-¹. GC/MS (EI): m/z (%) = 268 (6) [M+ - NO2 - NO2 - H], 238 (32) [M+ - NO2 - NO2 - CH3OH], 236 (41) [M+ - Cl - COOCH3 - OCH3], 209 (9) [M+ - H - C(Cl)(NO2)COOCH3], 168 (100) [M+ - NO2 - NO2 - Cl - Cl - OCH3]
23Reduction of the radical intermediate 7 with Ti(III) ions gives only one isomer of two possible 2-(hydroxyimino) esters. Based on the analysis of the NMR spectra measured for by-product 4a, we have determined its structure as ethyl (E)-2-(hydroxyimino)propanoate. Indeed, our assignment has been confirmed by the literature data. Stereoselective formation of (E)-2-(hydroxyimino)carboxylates indicates that the nitro group loses an oxygen atom adjacent to the ester group during reduction. This observation is very helpful for investigation of the transition state. For NMR data of ethyl (E)-2-(hydroxyimino)propanoate, see: (a) Lampeka, R. D.; Silva, T. Yu.; Skopenko, V. V. Zh. Obshch. Khim. 1989, 59, 1252. (b) Pitts, M. R.; Harrison, J. R.; Moody, C. J. J. Chem. Soc., Perkin Trans. 1 2001, 955. (c) For NMR data of ethyl (Z)-2-(hydroxyimino)propanoate, see: Beraud, V.; Perfetti, P.; Pfister, C.; Kaafarani, M.; Vanelle, P.; Crozet, M. P. Tetrahedron 1998, 54, 4923.
25Oxidative chlorination of ethyl nitroacetate does not lead to the expected ethyl chloronitroacetate but gives, instead, ethyl chloro(hydroxyimino)acetate as a main product.